scholarly journals Combined Magnetohydrodynamic and Geometric Optimization of a Hypersonic Inlet

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Kamesh Subbarao ◽  
Jennifer D. Goss

This paper considers the numerical optimization of a double ramp scramjet inlet using magnetohydrodynamic (MHD) effects together with inlet ramp angle changes. The parameter being optimized is the mass capture at the throat of the inlet, such that spillage effects for less than design Mach numbers are reduced. The control parameters for the optimization include the MHD effects in conjunction with ramp angle changes. To enhance the MHD effects different ionization scenarios depending upon the alignment of the magnetic field are considered. The flow solution is based on the Advection Upstream Splitting Method (AUSM) that accounts for the MHD source terms as well. A numerical Broyden-Flecher-Goldfarb-Shanno- (BFGS-) based procedure is utilized to optimize the inlet mass capture. Numerical validation results compared to published results in the literature as well as the outcome of the optimization procedure are summarized to illustrate the efficacy of the approach.

Author(s):  
Hong Zhou ◽  
Kwun-Lon Ting

A wide curve is a curve with width or cross-section. This paper presents a geometric optimization method of compliant mechanisms based on the free form wide curve theory. With the proposed method, geometric optimization can be performed to further improve the performance of a compliant mechanism after its topology is selected. Every connection in the topology is represented as a parametric wide curve in which variable shape and size are fully described and conveniently controlled by the limited number of parameters. The geometric optimization is formulated on the control parameters of the wide curves corresponding to all connections in the topology. Problem-dependent objectives are optimized and practical constraints are imposed during the optimization process. The optimization problem is solved by the constrained nonlinear programming algorithm in Matlab Optimization Toolbox. An example is presented to verify the effectiveness of the proposed optimization procedure.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5575
Author(s):  
Silvano Cruciani ◽  
Tommaso Campi ◽  
Francesca Maradei ◽  
Mauro Feliziani

This study deals with the optimization of a shielding structure composed by multiple active coils for mitigating the magnetic field in an automotive wireless power transfer (WPT) system at 85 kHz. Each active coil is independently powered and the most suitable excitation is obtained by an optimization procedure based on the Gradient Descent algorithm. The proposed procedure is described and applied to shield the magnetic field beside an electric vehicle (EV) equipped with SAE standard coils, during wireless charging. The obtained results show that the magnetic field in the most critical area is significantly reduced (i.e., approximately halved) with a very limited influence on the electrical performances (i.e., WPT efficiency decreases by less than 1 percentage point compared to the case without active shielding).


2021 ◽  
Vol 254 ◽  
pp. 02015
Author(s):  
Olga V. Sheremetyeva ◽  
Anna N. Godomskaya

The low-mode model αΩ-dynamo is used in this paper to simulate the modes of magnetic field generation with insignificant changes in the velocity field of a viscous fluid. In the framework of those model the α-effect intensity is regulated by the process that is included in the magnetohydrodynamic system (MHD-system) as an additive correction as a functional Z(t) depended on the magnetic field energy. Function that determines damped oscillations with variable damping frequency and constant damping coefficient, taken equal to one, is selected as kernel J(t) of functional Z(t). The research of the behavior of the magnetic field is carried out on large time scales, therefore, a rescaled and dimensionless MHD-system with the unit of time iquel the time of the magnetic field dissipation (104 years) for numerical calculations is used. The control parameters of the system are the Reynolds number and the amplitude of the α-effect, that include information about the large-scale and turbulent generators, respectively. Numerical simulation of the magnetic field generation modes was carried out for the values of the damping coefficient b = 1 and frequency a = 0.1, 0.5, 1, 5, 10. According to the results of numerical simulation, an increase in the values of the damping frequency, when the damping coefficient is equal to one, is characterized by a decrease in the inhibitory effect of the process Z(t) on the α-effect and an increase in the region of divergence of the magnetic field on the phase plane of the control parameters. In a comparative analysis with the results of the authors’ work, where the change of the α-effect intensity was determined by the function Z(t) with an exponential kernel and the same value of the damping coefficient, the following differences were noted: an increase in oscillations in both a magnetic and a velocity fields, the appearance of a chaotic regime of magnetic field generation at the value of the damping frequency equal to one, and also insignificant narrowing of the region of α-effect suppression at values of the damping frequency increasing to one.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Author(s):  
D. E. Speliotis

The interaction of electron beams with a large variety of materials for information storage has been the subject of numerous proposals and studies in the recent literature. The materials range from photographic to thermoplastic and magnetic, and the interactions with the electron beam for writing and reading the information utilize the energy, or the current, or even the magnetic field associated with the electron beam.


Author(s):  
S. Horiuchi ◽  
Y. Matsui

A new high-voltage electron microscope (H-1500) specially aiming at super-high-resolution (1.0 Å point-to-point resolution) is now installed in National Institute for Research in Inorganic Materials ( NIRIM ), in collaboration with Hitachi Ltd. The national budget of about 1 billion yen including that for a new building has been spent for the construction in the last two years (1988-1989). Here we introduce some essential characteristics of the microscope.(1) According to the analysis on the magnetic field in an electron lens, based on the finite-element-method, the spherical as well as chromatic aberration coefficients ( Cs and Cc ). which enables us to reach the resolving power of 1.0Å. have been estimated as a function of the accelerating As a result of the calculaton. it was noted that more than 1250 kV is needed even when we apply the highest level of the technology and materials available at present. On the other hand, we must consider the protection against the leakage of X-ray. We have then decided to set the conventional accelerating voltage at 1300 kV. However. the maximum accessible voltage is 1500 kV, which is practically important to realize higher voltage stabillity. At 1300 kV it is expected that Cs= 1.7 mm and Cc=3.4 mm with the attachment of the specimen holder, which tilts bi-axially in an angle of 35° ( Fig.1 ). In order to minimize the value of Cc a small tank is additionally placed inside the generator tank, which must serve to seal the magnetic field around the acceleration tube. An electron gun with LaB6 tip is used.


Sign in / Sign up

Export Citation Format

Share Document