scholarly journals Using Florida Keys Reference Sites As a Standard for Restoration of Forest Structure in Everglades Tree Islands

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Michael S. Ross ◽  
Danielle E. Ogurcak ◽  
Jay P. Sah ◽  
Pablo L. Ruiz

In south Florida, tropical hardwood forests (hammocks) occur in Everglades tree islands and as more extensive forests in coastal settings in the nearby Florida Keys. Keys hammocks have been less disturbed by humans, and many qualify as “old-growth,” while Everglades hammocks have received much heavier use. With improvement of tree island condition an important element in Everglades restoration efforts, we examined stand structure in 23 Keys hammocks and 69 Everglades tree islands. Based on Stand Density Index and tree diameter distributions, many Everglades hammocks were characterized by low stocking and under-representation in the smaller size classes. In contrast, most Keys forests had the dense canopies and open understories usually associated with old-growth hardwood hammocks. Subject to the same caveats that apply to off-site references elsewhere, structural information from mature Keys hammocks can be helpful in planning and implementing forest restoration in Everglades tree islands. In many of these islands, such restoration might involve supplementing tree stocking by planting native trees to produce more complete site utilization and a more open understory.

2013 ◽  
Vol 22 (3) ◽  
pp. 394 ◽  
Author(s):  
Grant L. Harley ◽  
Henri D. Grissino-Mayer ◽  
Sally P. Horn

We focussed on the influence of historical fire and varied fire management practices on the structure of globally endangered pine rockland ecosystems on two adjacent islands in the Florida Keys: Big Pine Key and No Name Key. We reconstructed fire history in two stands from fire scars on South Florida slash pines (Pinus elliottii Engelm. var. densa Little & Dor.) that were accurately dated using dendrochronology, and quantified stand structure to infer successional trajectories. Fire regimes on Big Pine Key and No Name Key over the past 150 years differed in fire return interval and spatial extent. Fire scar analysis indicated that fires burnt at intervals of 6 and 9 years (Weibull median probability interval) on Big Pine Key and No Name Key with the majority of fires occurring late in the growing season. On Big Pine Key, pine recruitment was widespread, likely due to multiple, widespread prescribed burns conducted since 2000. No Name Key experienced fewer fires than Big Pine Key, but pines recruited at the site from at least the 1890s through the 1970s. Today, pine recruitment is nearly absent on No Name Key, where fire management practices since 1957 could result in loss of pine rockland habitat.


2011 ◽  
Vol 26 (2) ◽  
pp. 91-93 ◽  
Author(s):  
Jason R. Teraoka ◽  
Christopher R. Keyes

Abstract A growing interest in the restoration of young second-growth forests by managers of reserves in the redwood region has led to a need to evaluate restoration-based silvicultural strategies. This case study assessed the effectiveness of low thinning as a forest restoration tool via analysis of stand structure at Redwood National Park's Whiskey Forty Forest Restoration Study. The second-growth stand had more than 5,500 trees ha−1 and 57.0 m2 ha−1 basal area and consisted chiefly of three species: Douglas-fir (the dominant species), redwood, and tanoak. Low thinning reduced stand density but also reduced species richness by eliminating scarce species. Seven years after thinning, growth was enhanced (33.6% gain in basal area), and mortality was minor (3% of all stems); however, Douglas-fir remained competitive in the upper canopy. Its average basal area increment was less than redwood's, but its radial growth was equal and its rate of basal area growth was greater in the years following thinning. We conclude that the thinning improved stand conditions but did not fully satisfy restoration goals and that other thinning methods, such as variable-density thinning, are likely to be more effective at promoting redwood dominance.


2012 ◽  
Vol 163 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Thomas A. Nagel ◽  
Jurij Diaci ◽  
Dusan Rozenbergar ◽  
Tihomir Rugani ◽  
Dejan Firm

Old-growth forest reserves in Slovenia: the past, present, and future Slovenia has a small number of old-growth forest remnants, as well as many forest reserves approaching old-growth conditions. In this paper, we describe some of the basic characteristics of these old-growth remnants and the history of their protection in Slovenia. We then trace the long-term development of research in these old-growth remnants, with a focus on methodological changes. We also review some of the recent findings from old-growth research in Slovenia and discuss future research needs. The conceptual understanding of how these forests work has slowly evolved, from thinking of them in terms of stable systems to more dynamic and unpredictable ones due to the influence of natural disturbances and indirect human influences. In accordance with this thinking, the methods used to study old-growth forests have changed from descriptions of stand structure to studies that address natural processes and ecosystem functions.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 458
Author(s):  
Haiyan Deng ◽  
Linlin Shen ◽  
Jiaqi Yang ◽  
Xiaoyong Mo

Background and Objectives: The stable stand structure of mixed plantations is the basis of giving full play to forest ecological function and benefit. However, the monocultural Eucalyptus plantations with large-scale and successive planting that caused ecological problems such as reduced species diversity and loss of soil nutrients have presented to be unstable and vulnerable, especially in typhoon-prone areas. The objective of this study was to evaluate the nonspatial structure difference and the stand stability of pure and mixed-Eucalyptus forests, to find out the best mixed pattern of Eucalyptus forests with the most stability in typhoon-prone areas. Materials and Methods: In this study, we randomly investigated eight plots of 30 m × 30 m in pure and mixed-Eucalyptus (Eucalyptus urophylla S. T. Blake × E. grandis W. Hill) plantations of different tree species (Neolamarckia cadamba (Roxb.) Bosser, Acacia mangium Willd., and Pinus elliottii var. Elliottii Engelm. × P. caribaea Morelet) on growth status, characterized and compared the distribution of nonspatial structure of the monoculture and mixtures, and evaluated the stand quality and stability from eight indexes of the nonspatial structure, including preservation rate, stand density, height, diameter, stem form, degree of stem inclination, tree-species composition, and age structure. Results: Eucalyptus surviving in the mixed plantation of Eucalyptus and A. mangium (EA) and in the mixed plantation of Eucalyptus and P. elliottii × P. caribaea (EP) were 5.0% and 7.6% greater than those in pure Eucalyptus plantation (EE), respectively, while only the stand preservation rate of EA was greater (+2.9%) than that of the pure Eucalyptus plantation. The proportions of all mixtures in the height class greater than 7 m were fewer than that of EE. The proportions of EA and mixed plantation of Eucalyptus and N. cadamba (EN) in the diameter class greater than 7 m were 10.6% and 7.8%, respectively, more than that of EE. EN had the highest ratio of branching visibly (41.0%), EA had the highest ratio of inclined stems (8.1%), and EP had the most straight and complete stem form (68.7%). The stand stability of the mixed plantation of Eucalyptus and A. mangium presented to be optimal, as its subordinate function value (0.76) and state value (ω = 0.61) of real stand were the largest. Conclusions: A. mangium is a superior tree species to mix with Eucalyptus for a more stable stand structure in the early growth stage to approach an evident and immense stability and resistance, which is of great significance for the forest restoration of Eucalyptus in response to extreme climate and forest management.


2021 ◽  
Author(s):  
Leszek Bartkowicz ◽  

The aim of the study was to compare a patch-mosaic pattern in the old-growth forest stands developed in various climate and soil conditions occurring in different regions of Poland. Based on the assumption, that the patch-mosaic pattern in the forest reflect the dynamic processes taking place in it, and that each type of forest ecosystem is characterized by a specific regime of natural disturbances, the following hypotheses were formulated: (i) the patches with a complex structure in stands composed of latesuccessional, shade-tolerant tree species are more common than those composed of early-successional, light-demanding ones, (ii) the patch-mosaic pattern is more heterogeneous in optimal forest site conditions than in extreme ones, (iii) in similar site conditions differentiation of the stand structure in distinguished patches is determined by the successional status of the tree species forming a given patch, (iv) the successional trends leading to changes of species composition foster diversification of the patch structure, (v) differentiation of the stand structure is negatively related to their local basal area, especially in patches with a high level of its accumulation. Among the best-preserved old-growth forest remaining under strict protection in the Polish national parks, nineteen research plots of around 10 ha each were selected. In each plot, a grid (50 × 50 m) of circular sample subplots (with radius 12,62 m) was established. In the sample subplots, species and diameter at breast height of living trees (dbh ≥ 7 cm) were determined. Subsequently, for each sample subplot, several numerical indices were calculated: local basal area (G), dbh structure differentiation index (STR), climax index (CL) and successional index (MS). Statistical tests of Kruskal- Wallis, Levene and Generalized Additive Models (GAM) were used to verify the hypotheses. All examined forests were characterized by a large diversity of stand structure. A particularly high frequency of highly differentiated patches (STR > 0,6) was recorded in the alder swamp forest. The patch mosaic in the examined plots was different – apart from the stands with a strongly pronounced mosaic character (especially subalpine spruce forests), there were also stands with high spatial homogeneity (mainly fir forests). The stand structure in the distinguished patches was generally poorly related to the other studied features. Consequently, all hypotheses were rejected. These results indicate a very complex, mixed pattern of forest natural dynamics regardless of site conditions. In beech forests and lowland multi-species deciduous forests, small-scale disturbances of the gap dynamics type dominate, which are overlapped with less frequent medium-scale disturbances. In more difficult site conditions, large-scale catastrophic disturbances, which occasionally appear in communities formed under the influence of gap dynamics (mainly spruce forests) or cohort dynamics (mainly pine forests), gain importance.


Author(s):  
Astor Toraño Caicoya ◽  
Hans Pretzsch

The Site Index (SI) has been widely used in forest management and silviculture. It relies on the assumption that the height of dominant trees in a stand is independent from the local density. However, research on climate change suggests that under certain moisture stress conditions, this may not hold. Here, based on 29 plots from 5 long-term research experiments, we have tested the effect of local stand density on the SI of Norway spruce (Picea abies (L.) H. Karst). With generalized additive models (GAMM), we analyzed the effect of stand structure and climate predictors on SI. The two evaluated models revealed that local stand density and age had a significant effect on SI (p≤0.001 ), showing a clear negative trend especially significant on sites with poor and dry soils, which may reduce the site index by a maximum of approximately 4 m for an increase in density between 400 and 600 trees/ha. We stress that the physiological characteristics of Norway spruce, flat-rooting system and xeromorphism, especially when growing in pure stands, may explain these effects. Thus, density control and growth in mixtures may help to reduce the water stress and losses in height growth under future climate conditions.


2009 ◽  
Vol 51 (1) ◽  
pp. 40-48
Author(s):  
Toomas Frey

Stand structure links up canopy processes and forest management Above- and belowground biomass and net primary production (Pn) of a maturing Norway spruce (Picea abies (L.) Karst.) forest (80 years old) established on brown soil in central Estonia were 227, 50 and 19.3 Mg ha correspondingly. Stand structure is determined mostly by mean height and stand density, used widely in forestry, but both are difficult to measure with high precision in respect of canopy processes in individual trees. However, trunk form quotient (q2) and proportion of living crown in relation to tree height are useful parameters allowing describe stand structure tree by tree. Based on 7 model trees, leaf unit mass assimilation activity and total biomass respiration per unit mass were determined graphically as mean values for the whole tree growth during 80 years of age. There are still several possible approaches not used carefully enough to integrate experimental work at instrumented towers with actual forestry measurement. Dependence of physiological characteristics on individual tree parameters is the missing link between canopy processes and forest management.


2018 ◽  
Vol 10 (3) ◽  
pp. 945-953 ◽  
Author(s):  
Akash . ◽  
Navneet . ◽  
B.S. Bhandari

In present study, we present data on tree diversity, stand structures and community composition in six sites of tropical forest in Rajaji tiger reserve, Northern India. The enumeration of 72 plots results a total of 19,050 individuals, 47 species, 42 genera, 25 families in which Holoptelia integrifolea, Dalbergia sissoo, Shorea robusta, Cassia fistula and Trewia nudiflora were the species which showed higher importance value index (IVI) in the study area. The stand density of the six sites ranges from 149.99 - 397.91 hac-1 where as the total basal area of trees ranges from 3.612 - 46.813 m2/hac-1. The Shannon diversity index ranged from 1.35 to 2.51, Simpson index ranged from 0.097 - 0.446, Margalef index ranged 2.584 - 4.9, The Evenness index ranged from  0.551 - 0.852 in the study area. Further the studied area has showed ample evidences from indices in supporting the higher floristic diversity and stand structure after providing the present area as a status of tiger reserve.


1983 ◽  
Vol 7 (4) ◽  
pp. 208-212 ◽  
Author(s):  
Robert N. Muller

Abstract An old-growth forest and a 35-year-old, second-growth forest on the Cumberland Plateau were studied to compare species composition and structure. Species composition and total basal area of the two stands did not differ, although total stand density was 19 percent lower and basal area of commercial species was 25 percent higher in the old-growth than in the second-growth stand. Analysis of size-class distributions showed that both stands were best represented by an inverse J-shaped distribution, which best describes old-age stands. The rapid regeneration of the second-growth stand seems to be the result of minimal disturbance to accumulated nutrient pools in the soil. The importance of these accumulated nutrient pools and implications for forest management on the Cumberland Plateau are discussed.


Sign in / Sign up

Export Citation Format

Share Document