scholarly journals Synthesis of Boron Nanorods by Smelting Non-Toxic Boron Oxide in Liquid Lithium

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Amartya Chakrabarti ◽  
Tao Xu ◽  
Laura K. Paulson ◽  
Kate J. Krise ◽  
John A. Maguire ◽  
...  

In contrast to the conventional bottom-up syntheses of boron nanostructures, a unique top-down and greener synthetic strategy is presented for boron nanorods involving nontoxic boron oxide powders ultrasonically smelted in liquid lithium under milder conditions. The product was thoroughly characterized by energy dispersive X-ray analysis, atomic emission spectroscopy, thermogravimetric analysis and, UV-Vis spectroscopy, including structural characterization by transmission electron microscopy (TEM).

2012 ◽  
Vol 19 (2) ◽  
pp. 195-197 ◽  
Author(s):  
Gianfranco Carotenuto ◽  
Mariano Palomba ◽  
Luigi Nicolais

AbstractLightfast color filters (intensively and brightly colored) can be easily produced by dying optical plastics with the surface plasmon resonance (SPR) of metal nanoparticles such as silver and gold. Here, color filters based on silver nanoparticles embedded in amorphous polystyrene have been prepared by dissolving and thermally decomposing (1,5-cyclooctadiene)(hexafluoro-acetylacetonate)silver(I) in amorphous polystyrene. The metal precursor quickly decomposes (10 s, at 180°C), leading to silver atoms that clusterize and produce a non-aggregated dispersion of silver particles in the polymer matrix. The intensity of the yellow coloration due to the SPR of nanoscopic silver can be widely tuned simply by varying the cluster numerical density in the polymer matrix that depends on the silver precursor concentration. The obtained nanocomposite films have been characterized by X-ray power diffraction, transmission electron microscopy, and UV-Vis spectroscopy.


2020 ◽  
Vol 10 ◽  
pp. 184798042096688
Author(s):  
Galo Cárdenas-Triviño ◽  
Sergio Triviño-Matus

Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.


2021 ◽  
Vol 22 (4) ◽  
pp. 1874
Author(s):  
Giarita Ferraro ◽  
Alessandro Pratesi ◽  
Damiano Cirri ◽  
Paola Imbimbo ◽  
Daria Maria Monti ◽  
...  

Arsenoplatin-1 (AP-1), the prototype of a novel class of metallodrugs containing a PtAs(OH)2 core, was encapsulated within the apoferritin (AFt) nanocage. UV-Vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy measurements confirmed metallodrug encapsulation and allowed us to determine the average amount of AP-1 trapped inside the cage. The X-ray structure of AP-1-encapsulated AFt was solved at 1.50 Å. Diffraction data revealed that an AP-1 fragment coordinates the side chain of a His residue. The biological activity of AP-1-loaded AFt was comparatively tested on a few representative cancer and non-cancer cell lines. Even though the presence of the cage reduces the overall cytotoxicity of AP-1, it improves its selectivity towards cancer cells.


2021 ◽  
Vol 170 ◽  
pp. 112548
Author(s):  
Ryo Omura ◽  
Juro Yagi ◽  
Keisuke Mukai ◽  
Makoto Oyaidzu ◽  
Kentaro Ochiai ◽  
...  

2014 ◽  
Vol 3 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Hannes Alex ◽  
Norbert Steinfeldt ◽  
Klaus Jähnisch ◽  
Matthias Bauer ◽  
Sandra Hübner

AbstractNanoparticles (NP) have specific catalytic properties, which are influenced by parameters like their size, shape, or composition. Bimetallic NPs, composed of two metal elements can show an improved catalytic activity compared to the monometallic NPs. We, herein, report on the selective aerobic oxidation of benzyl alcohol catalyzed by unsupported Pd/Au and Pd NPs at atmospheric pressure. NPs of varying compositions were synthesized and characterized by UV/Vis spectroscopy, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The NPs were tested in the model reaction regarding their catalytic activity, stability, and recyclability in batch and continuous procedure. Additionally, in situ extended X-ray absorption fine structure (EXAFS) measurements were performed in order to get insight in the process during NP catalysis.


2021 ◽  
pp. 124-131
Author(s):  
A.V. Alekseev ◽  
◽  
G.V. Orlov ◽  
P.S. Petrov ◽  
A.V. Slavin ◽  
...  

The determination of the elements Cu, Ni, Sb, Bi, Pb, Zn and Fe in the tin-based solder VPr35, as well as the elements Sn, Ni, Sb, Bi and In in the lead-based VPr40 solder by the method of х-ray fluorescence spectroscopy has been carried out. The calibration dependences are corrected taking into account the superposition of signals from interfering elements on the analytical signal and changes in intensity caused by inter-element influences in the matrix. The analysis was carried out by the method of fundamental parameters without using standard samples. The correctness of the results obtained was confirmed by their comparative analysis by atomic emission spectroscopy and high-resolution mass spectrometry with a glow discharge.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3368 ◽  
Author(s):  
Kefilwe Mokwebo ◽  
Oluwatobi Oluwafemi ◽  
Omotayo Arotiba

We report the preparation of poly (propylene imine) dendrimer (PPI) and CdTe/CdSe/ZnSe quantum dots (QDs) as a suitable platform for the development of an enzyme-based electrochemical cholesterol biosensor with enhanced analytical performance. The mercaptopropionic acid (MPA)-capped CdTe/CdSe/ZnSe QDs was synthesized in an aqueous phase and characterized using photoluminescence (PL) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-ray power diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy. The absorption and emission maxima of the QDs red shifted as the reaction time and shell growth increased, indicating the formation of CdTe/CdSe/ZnSe QDs. PPI was electrodeposited on a glassy carbon electrode followed by the deposition (by deep coating) attachment of the QDs onto the PPI dendrimer modified electrode using 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS) as a coupling agent. The biosensor was prepared by incubating the PPI/QDs modified electrode into a solution of cholesterol oxidase (ChOx) for 6 h. The modified electrodes were characterized by voltammetry and impedance spectroscopy. Since efficient electron transfer process between the enzyme cholesterol oxidase (ChOx) and the PPI/QDs-modified electrode was achieved, the cholesterol biosensor (GCE/PPI/QDs/ChOx) was able to detect cholesterol in the range 0.1–10 mM with a detection limit (LOD) of 0.075 mM and sensitivity of 111.16 μA mM−1 cm−2. The biosensor was stable for over a month and had greater selectivity towards the cholesterol molecule.


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1548-1560
Author(s):  
Daniel Garcia-Bedoya ◽  
Luis P. Ramírez-Rodríguez ◽  
Jesús M. Quiroz-Castillo ◽  
Edgard Esquer-Miranda ◽  
Arnulfo Castellanos-Moreno

Algae constitute a diverse group that is useful in many biotechnological areas. In this paper, the usefulness of Caulerpa sertularioides methanol extract in the synthesis of ZnO and Zn(OH)2 nanoparticles was explored. This work had two main objectives: (1) to use the extract in the synthesis as an organic harmless complexing agent, and (2) to enhance a photocatalytic effect over AZO dyes in wastewater from fabric industries without adding nanomaterial to the environment due to its toxicity. Caulerpa extract performed the expected complexing action, and nanoparticles were formed in a size range from 45 to 69 nm. X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UV-Vis spectroscopy were used to characterize the system. It was demonstrated that the nanoparticles were useful to photocatalyst AZO dyes in the water, while contained in tetraethylorthosilicate composites. These could be used in industrial wastewater and are expected to have no environmental consequences because the composites do not add nanoparticles to the water.


2014 ◽  
Vol 2 (4) ◽  
pp. 510-515
Author(s):  
Hala Moustafa Ahmed

The present study mainly focuses of combined action of Nepali hog plum as well as citrate synthesized silver nanoparticles (AgNPs) and Amikacin, as an antibiotic. The synergistic actions of citrate stabilized silver nanoparticles (AgNPs with chem) were compared with that of Nepali hog plum Choerospondia saxillaris (Lapsi) synthesized silver nanoparticles (AgNPs with plant), together with action of antibiotic onselected bacterial strains of Salmonella typhi. The synthesized AgNPs were characterized through UV-Vis spectroscopy, Transmission electronmicroscopy and X-ray diffraction technique. The size of the synthesized silver nanoparticles was measured by Transmission Electron Microscope (TEM) and X-ray diffraction (XRD).DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11127 Int J Appl Sci Biotechnol, Vol. 2(4): 510-515 


Sign in / Sign up

Export Citation Format

Share Document