scholarly journals Ten-Year (1999–2009) Epidemiological and Virological Surveillance of Influenza in South Italy (Apulia)

2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Annamaria Campa ◽  
Manuela Quattrocchi ◽  
Marcello Guido ◽  
Giovanni Gabutti ◽  
Cinzia Germinario ◽  
...  

Clinical and epidemiological surveillance of influenza and other Acute Respiratory Infections (ARI) are currently a major objective of Public Health. The aim was to describe the epidemiology of influenza using the Italian surveillance system. Vaccination Coverage (VC) rates were calculated during 1999-2009 influenza seasons. Molecular studies of influenza virus isolated, from patients with ILI, living in Apulia, are described. 1269 nasal-pharyngeal swabs were taken from patients with ILI and ARI in order to isolate and identify viruses using PCR. Influenza isolates are typed as being types A and B and influenza A isolates are A/H1 and A/H3. The progression of the ILI cases registered in Apulia was similar to the data recorded on a national level. The VC data recorded in Apulia showed a progressive increase in the vaccine doses administered to subjects over 65 years old. The virological surveillance showed a major circulation of the type A/H3N2 influenza virus during the peak incidence of the illness in seasons 1999-2000, 2002-2003, 2004-2005 and 2008-2009. During the same period, the lowest incidence was registered when the type A/H1N1 and B viruses were in circulation. In contrast, during the other seasons the lowest incidence was reported with A/H3N2 and B viruses.

2007 ◽  
Vol 60 (7-8) ◽  
pp. 351-356
Author(s):  
Ivanko Bojic ◽  
Olga Dulovic ◽  
Eleonora Gvozdenovic ◽  
Svetlana Minic

Introduction. Acute respiratory infections are the most common infections in the human population. Among them, virus infections, especially those caused by influenza viruses, have an important place. Type A influenza. Type A influenza virus caused three epidemics during the last century. A high percetage of deceased in pandemics of 1918, and 1919 were young, healthy persons, with many of the deaths due to an unusually severe, hemorrhagic pneumonia. At the end of 2003, and the beginning of 2004, an epidemic emerged in South East Asia of poultry influenza caused by animal (avian) virus. Later it spread to the human population, with a high death rate of 73% and with a possibility of interhuman transmission. This review article provides an overview of the clinical manifestations, laboratory findings and chest radiographs. Apart from the symptomatic and supportive therapy, there are antiviral drugs and corticosteriods. Conclusion. The use of vaccine containing subtypes of virus hemagglutinins and neuraminidase from an influenza virus currently infecting the population has a great importance. .


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James D. Allen ◽  
Ted M. Ross

AbstractWhile vaccines remain the best tool for preventing influenza virus infections, they have demonstrated low to moderate effectiveness in recent years. Seasonal influenza vaccines typically consist of wild-type influenza A and B viruses that are limited in their ability to elicit protective immune responses against co-circulating influenza virus variant strains. Improved influenza virus vaccines need to elicit protective immune responses against multiple influenza virus drift variants within each season. Broadly reactive vaccine candidates potentially provide a solution to this problem, but their efficacy may begin to wane as influenza viruses naturally mutate through processes that mediates drift. Thus, it is necessary to develop a method that commercial vaccine manufacturers can use to update broadly reactive vaccine antigens to better protect against future and currently circulating viral variants. Building upon the COBRA technology, nine next-generation H3N2 influenza hemagglutinin (HA) vaccines were designed using a next generation algorithm and design methodology. These next-generation broadly reactive COBRA H3 HA vaccines were superior to wild-type HA vaccines at eliciting antibodies with high HAI activity against a panel of historical and co-circulating H3N2 influenza viruses isolated over the last 15 years, as well as the ability to neutralize future emerging H3N2 isolates.


2021 ◽  
Vol 10 (36) ◽  
pp. 167-169
Author(s):  
Camila Siqueira ◽  
Diogo Kuczera ◽  
Eneida Da Lozzo ◽  
Dorly Buchi ◽  
José Nelson Couceiro ◽  
...  

Introduction: Strains of macrophages, such as murine J774.G8 macrophages, are susceptible to influenza A infection [1]. One of the responses to viral infection involves the production of various types of immunostimulatory cytokines by infected cells [2]. Methods: In the present study, the macrophage strain J774.G8, maintained in RPMI medium, was submitted to treatment with 10% V/V of two different biotherapics prepared from influenza H3N2, both at 30x. Additionally, two control groups were analyzed: macrophages stimulated with water 30x and macrophages without any treatment. Biotherapics were prepared from intact H3N2 influenza virus and H3N2 inactivated by alcohol 70%. The compounding of both biotherapics followed this procedure: one part of viral particles was diluted in 9 parts of sterile distilled water. The 1:10 sample was submitted to 100 mechanical succussions using Autic® Brazilian machine, originating the first dilution, named decimal (1x). 1 ml of this solution was diluted in 9 ml of solvent and was submitted to 100 succussions, generating biotherapic 2x. This procedure was successively repeated, according to Brazilian Homeopathic Pharmacopoeia, to obtain the biotherapic 30x. By the same technique, water vehicle was prepared in the potency of 30x to be used as control. All samples were prepared under sterile and aseptic conditions, using laminar flow cabinet, class II, and were stored in the refrigerator (8ºC), to avoid microbiological contamination. J774.G8 macrophages were stimulated for 2 days, in a total of six stimuli. Immediately before infection with 25 µl of H3N2 influenza virus, the supernatants were collected and frozen at -20 ºC for later analysis. Next, 24 hours after the virus infection, the supernatants were aliquoted and frozen under the same conditions. Three independent experiments were done in triplicate. Analysis of supernatants was performed by flow cytometry using the Mouse Inflammation Kit. The cytokines detected in this experiment were IL-10, IL 12, TNF-α and MCP1. Results: In all cases, there were no significant differences compared to control groups. However, the production of TNF-α detected in macrophages treated by intact and inactivated biotherapics presented a tendency to increase after infection. In fact, similar results were previously detected in other experiments conducted only with the intact biotherapic [3]. The release of the cytokine MCP1 in all experimental situations presented a tendency to decrease after the viral infection when compared to untreated macrophages. No statistically significant difference was detected in the production of IL 12 and IL 10. These experiments will be repeated to confirm the data obtained.


2014 ◽  
Vol 53 (2) ◽  
pp. 706-709 ◽  
Author(s):  
Kimberle C. Chapin ◽  
Estefany J. Flores-Cortez

Data on the performance of rapid molecular point-of-care use platforms for diagnosis of influenza are lacking. We validated nasopharyngeal (NP) flocked specimens in universal transport medium (UTM) and evaluated the clinical sensitivity and specificity of the Alere i influenza A&B test compared to those of the Xpert flu A/B assay. The Alere i influenza A&B test had an overall sensitivity and specificity of 93.8% and 62.5% for influenza A, respectively, and of 91.8% and 53.6% for influenza B, respectively. The poor specificity was due to influenza virus samples determined positive for both type A and B.


1976 ◽  
Vol 77 (3) ◽  
pp. 383-392 ◽  
Author(s):  
E. O. Caul ◽  
D. K. Waller ◽  
S. K. R. Clarke ◽  
B. D. Corner

SUMMARYAmong 741 children under 5 years admitted to hospital with respiratory infections during two winters, infection with influenza A virus was diagnosed in 70 (9%), with influenza B virus in 8 (1%), and with respiratory syncytial virus (RSV) in 259 (35 %). Both influenza virus and RSV infections were diagnosed most frequently in children under the age of one year, and diagnosed more frequently in males than females. Influenza illnesses were more severe in boys than girls. Both infections occurred more often, but were not more severe, in children from a conurbation than in those from ‘rural’ areas. Convulsions were the cause of 36% of admissions with influenza A infections, but were rare in RSV infections. Bronchiolitis was the reason for 39% of admissions with RSV infections, but was rare in influenza infections. It is suggested that infants admitted to hospital are a good source of influenza virus strains for monitoring arttigenic variation.


1998 ◽  
Vol 36 (5) ◽  
pp. 1441-1442 ◽  
Author(s):  
Evgenia Greenbaum ◽  
Avraham Morag ◽  
Zichria Zakay-Rones

During the winter of 1996 to 1997 two cases of influenza C were confirmed, one by isolation and the second by serology (fourfold increase in hemagglutination inhibition antibodies). The cases of influenza C occurred during an outbreak of influenza A (H3N2) and B viruses. The positive isolation was from one of three throat washings sent to the laboratory, and the other case was from a group of 51 students participating in a study of influenza virus vaccination. It seems, therefore, that influenza C virus should also be considered when examining patients with respiratory infections during the influenza season.


2003 ◽  
Vol 77 (14) ◽  
pp. 7756-7763 ◽  
Author(s):  
Haiyan Liu ◽  
Samita Andreansky ◽  
Gabriela Diaz ◽  
Stephen J. Turner ◽  
Dominik Wodarz ◽  
...  

ABSTRACT The consequences for the long-term maintenance of virus-specific CD8+-T-cell memory have been analyzed experimentally for sequential respiratory infections with readily eliminated (influenza virus) and persistent (gammaherpesvirus 68 [γHV68]) pathogens. Sampling a broad range of tissue sites established that the numbers of CD8+ T cells specific for the prominent influenza virus DbNP366 epitope were reduced by about half in mice that had been challenged 100 days previously with γHV68, though the prior presence of a large CD8+ DbNP366 + population caused no selective defect in the γHV68-specific CD8+ Kbp79+ response. Conversely, mice that had been primed and boosted to generate substantial γHV68-specific CD8+ Dbp56+ populations did not show any decrease in prevalence for this set of CD8+ memory cytotoxic T lymphocytes (CTL) at 200 days after respiratory exposure to an influenza A virus. However, in both experiments, the total magnitude of the CD8+-T-cell pool was significantly diminished in those that had been infected with γHV68 and the influenza A virus. The broader implications of these findings, especially under conditions of repeated exposure to unrelated pathogens, are explored with a mathematical model which emphasizes that the immune effector and memory “phenome” is a function of the overall infection experience of the individual.


2017 ◽  
Author(s):  
Xiangjun Du ◽  
Aaron A. King ◽  
Robert J. Woods ◽  
Mercedes Pascual

ABSTRACTInter-pandemic or seasonal influenza exacts an enormous annual burden both in terms of human health and economic impact. Incidence prediction ahead of season remains a challenge largely because of the virus’ antigenic evolution. We propose here a forecasting approach that incorporates evolutionary change into a mechanistic epidemiological model. The proposed models are simple enough that their parameters can be estimated from retrospective surveillance data. These models link amino-acid sequences of hemagglutinin epitopes with a transmission model for seasonal H3N2 influenza, also informed by H1N1 levels. With a monthly time series of H3N2 incidence in the United States over 10 years, we demonstrate the feasibility of prediction ahead of season and an accurate real-time forecast for the 2016/2017 influenza season.SUMMARYSkillful forecasting of seasonal (H3N2) influenza incidence ahead of the season is shown to be possible by means of a transmission model that explicitly tracks evolutionary change in the virus, integrating information from both epidemiological surveillance and readily available genetic sequences.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 427 ◽  
Author(s):  
Caterina Rizzo ◽  
Francesco Gesualdo ◽  
Daniela Loconsole ◽  
Elisabetta Pandolfi ◽  
Antonino Bella ◽  
...  

Every season, circulating influenza viruses change; therefore, vaccines must be reformulated each year. We aimed to estimate vaccine effectiveness (VE) against severe influenza infection for the 2018/19 season in Italy. We conducted a test-negative design case-control study at five Italian hospitals. We estimated influenza VE against severe acute respiratory infection (SARI) requiring hospitalisation overall, and by virus subtype, vaccine brand, and age. The 2018/19 season was characterised by A(H1N1)pmd09 and A(H3N2) influenza viruses. Vaccine coverage among <18 years recruited SARI cases was very low (3.2%). Seasonal vaccines were moderately effective against type A influenza overall (adjusted VE = 40.5%; 95% confidence interval (CI) = 18.7–56.4%) and subtype A(H1N1)pmd09 viruses (adjusted VE = 55%; 95% CI = 34.5–69.1%), but ineffective against subtype A(H3N2) viruses (adjusted VE = 2.5%; 95% CI = −50.0–36.7%). Both Fluad and Fluarix Tetra vaccines were effective against type A influenza overall and subtype A(H1N1)pdm09 viruses. VE appeared to be similar across age groups (0–64 years, ≥65 years). Seasonal influenza vaccines in the 2018/19 season were moderately effective in preventing SARI caused by A(H1N1)pdm09 influenza but ineffective against A(H3N2).


Sign in / Sign up

Export Citation Format

Share Document