scholarly journals Fabrication of Nano-Ce and Application of Nano-Ce in Fe Matrix Composites

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Wang Tiebao ◽  
Cui Chunxiang ◽  
Wang Xiaodong ◽  
Li Guobin

It is expatiated that nano-Ce is fabricated by the direct sedimentation method. The components and particles diameter of nano-Ce powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-Ce with Al in Fe matrix composites are researched, which shows that the reaction is generated between Ce and Al in the composite, that is, 3Ce+4Al2A +3[Ce], which obtains A and active [Ce] during the sintering process. The active [Ce] can improve the performance of Ce/Fe matrix composites. The suitable amount of Ce is about 0.05% in Ce/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-Ce/Fe matrix composites are more than those in no-added nano-Ce composites, which can explain that adding nano-Ce into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-Ce to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-Ce.

2003 ◽  
Vol 250 ◽  
pp. 233-238 ◽  
Author(s):  
Ying Ning Hu ◽  
Cheng Yong Wang ◽  
Xin Wei ◽  
Z.G. Li

Author(s):  
Qingliang Zeng ◽  
Zhiwen Wang ◽  
Lirong Wan ◽  
Xin Zhang ◽  
Zhenguo Lu

To solve the problem of coal-rock damage during cutting coal and rock by diamond saw blade — the LS-DYNA diamond saw blade — coal and rock finite element model is established. According to the fracture mechanism of brittle materials, by studying a single diamond saw blade with different cutting speeds and revolution speeds along with double diamond saw blades with different spacing, cutting speeds and cutting speeds of coal-rock damage, axial force and force change, the numerical simulation resultant demonstrated the axial force, cutting force and rock damage decrease significantly with an increase in rotational speed. The force and damage increase with an increase in the cutting speed and a decrease in the distance of the diamond saw blade. The axial force linearly increases with rotational speed and cutting speed. The cutting force exponentially decreases with increasing rotational speed, and it increases with increasing feeding speed. The forces decrease linearly with the increasing distance of the diamond saw blades. The damage degree of rock increases as the distance and rotational speed increase, and it decreases as the cutting speed increases.


2011 ◽  
Vol 130-134 ◽  
pp. 887-890
Author(s):  
Yun Feng Zhang ◽  
Zhen Nan Qi ◽  
Xi Ying Lang ◽  
Min Zhao

The structure reliability of the diamond saw blade in milling process is studied. With probability design features of ANSYS, take the flange diameter ,thickness, diameter of the diamond saw blade and load suffered in the milling process as input variables, and take the maximum equivalent stress of dangerous parts of the diamond saw blades stress as output variable. The diamond saw blade structure reliability is analysed using Monte Carlo method and the maximum equivalent stress value cumulative distribution and dangerous parts of various parameters on the distribution of the maximum equivalent stress sensitivity under the impact of the load are got. The result provides a theoretical basis for improving the parameters of diamond saw blade and has the significant practical and theoretical value for the stone processing theory and diamond saw blade study.


2011 ◽  
Vol 130-134 ◽  
pp. 955-958
Author(s):  
Min Zhao ◽  
Xi Ying Lang ◽  
Feng Lian Qi ◽  
Dong Liang Lei

The process of cutting granite material is simulated with using analysis of LS-DYNA finite element. The stress, strain and cutting force of a diamond saw blade are analyzed when cutting granite materials. Then the stress-strain distribution and cutting force curve of the diamond saw blade can be got in the process of cutting granite materials and a conclusion of the change rule of the cutting force is also obtained. When the diamond saw blade just contacts the workpiece, the cutting force rises gradually and after entering the certain cutting depth, the cutting force fluctuates in a very small range. Through the simulation, the theory of FEM model to calculate granite materials cutting force is obtained. By changing the parameters of the diamond saw blades, the influence of all parameters on cutting force of diamond saw blade is analyzed .A diamond saw blade's structure is optimized, when the parameters of saw blades is suitably selected. The processing performance of a diamond saw blade is improved further, and the result has important practical significance to process the granite material.


Author(s):  
Claude Lechene

Electron probe microanalysis of frozen hydrated kidneysThe goal of the method is to measure on the same preparation the chemical elemental content of the renal luminal tubular fluid and of the surrounding renal tubular cells. The following method has been developed. Rat kidneys are quenched in solid nitrogen. They are trimmed under liquid nitrogen and mounted in a copper holder using a conductive medium. Under liquid nitrogen, a flat surface is exposed by sawing with a diamond saw blade at constant speed and constant pressure using a custom-built cryosaw. Transfer into the electron probe column (Cameca, MBX) is made using a simple transfer device maintaining the sample under liquid nitrogen in an interlock chamber mounted on the electron probe column. After the liquid nitrogen is evaporated by creating a vacuum, the sample is pushed into the special stage of the instrument. The sample is maintained at close to liquid nitrogen temperature by circulation of liquid nitrogen in the special stage.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


2021 ◽  
Author(s):  
Vipin Sharma ◽  
Yogesh Dewang ◽  
Pardeep Kumar Nagpal ◽  
Suresh Kumar

Abstract Metal matrix composites are an important class of material that is developing rapidly to fulfil the diversified engineering requirements. The metal matrix composites are attractive owing to superior properties as compared to monolithic material. Their properties are dependent on various factors and fabrication techniques. The metal matrix composites are associated with several issues which hinder their full potential. In the present study friction stir processing is applied on the metal matrix composite as a post-processing operation. The friction stir processing offers many advantages owing to the solid-state nature of the processing. Stir cast metal matrix composites are prepared by using zircon sand particles of 50 µm in the matrix of LM13 aluminium alloy. The friction stir processing is applied on the metal matrix plates at a constant rotational speed and traverse speed of 1400 rpm and 63 mm/min, respectively. Multiple passes of friction stir processing are applied to elucidate the effect of the number of passes on microstructural modification. Microstructural examination showed a significant improvement in eutectic silicon morphology and distribution of zircon sand particles. A more than 5 times reduction as compared to the initial size was observed in the zircon sand particles after four passes of friction stir processing. The processed metal matrix composite also exhibits improvement in tensile strength and hardness.


2021 ◽  
Vol 8 ◽  
Author(s):  
Senthil Kumaran Selvaraj ◽  
Kathiravan Srinivasan ◽  
Utkarsh Chadha ◽  
Rajat Mishra ◽  
Kurane Arpit ◽  
...  

Graphical AbstractA Brief Review of the Ultrasonic welding process flow and sequence for joining aluminium metal matrix composite.


2021 ◽  
Vol 16 (3) ◽  
pp. 112-123
Author(s):  
Mahmut Can Şenel ◽  
Mevlüt Gürbüz

In the current work, nano boron nitride (BN) reinforced aluminum (Al) matrix composites with different BN amounts (0.5-2wt.%) were produced by the powder metallurgy(PM) route. This fabrication method consists of dispersing, filtering, mixing, drying, compaction, and sintering processes. The density, compressive strength, micro Vickers hardness, microstructure, and phase structures of Al-BN composites and pure Al were examined. The obtained results indicated that minimum porosity (3.2%), highest density (~2.61g/cm3), Vickers hardness (~50HV), and compressive strength (~168MPa) were obtained at 1%BN reinforced aluminum matrix composite. A tremendous enhancement in Vickers hardness and compressive strength of %1BN reinforced Al matrix composite was achieved as ~61% and ~110% compared to pure Al. Consequently, the mechanical strength of BN reinforced Al-based composites enhanced up to 1% nano boron nitride amount. Due to the clumping of BN nanoparticles, the mechanical strength decreased after this content.


Sign in / Sign up

Export Citation Format

Share Document