scholarly journals Viscoelastic Properties of Polypropylene Reinforced with Mica in and Transition Zones

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
S. Farzaneh ◽  
A. Tcharkhtchi

The viscoelastic properties of mica-reinforced polypropylene (PP) was studied in temperature range between −30°C and 120°C. WLF equation permits determining the free volume fraction in and transitions regions. It was shown that the value of this parameter is lower for transition, indicating that the free volume and thermal expansion of region is more than that of region. At a 40% loading level, it was shown that the storage and loss modulus of mica-filled PP increases dramatically (in comparison with the pure polypropylene). The relative modulus does not change significantly at glassy state but it increases for the temperature higher than . It was also shown that mica does not affect the glass transition temperature but results in an increase in transition.

2021 ◽  
Vol 22 (3) ◽  
pp. 1436
Author(s):  
Giovanni Consolati ◽  
Eros Mossini ◽  
Dario Nichetti ◽  
Fiorenza Quasso ◽  
Giuseppe Maria Viola ◽  
...  

The free volume fraction of a macromolecular structure can be assessed theoretically by using a suitable model; however, it can also be evaluated from experimental data obtained from dilatometry and positron annihilation lifetime spectra. In this second case, a regular geometry of the sub-nanometric cavities forming the free volume has to be assumed, although in fact they are irregularly shaped. The most popular approach is to guess spherical holes, which implies an isotropic growth of these last with temperature. In this work, we compared the free volume fraction, as obtained from experiments in a set of polybutadiene and polyisoprene cured rubbers and their blends, with the analogous quantity expected by using the lattice-hole model. The results allowed us to obtain insights on the approximate shape of the holes. Indeed, a cylindrical flattened geometry of the cavities produced a better agreement with the theory than the spherical shape. Furthermore, the best fit was obtained for holes that expanded preferentially in the radial direction, with a consequent decrease of the aspect ratio with temperature.


In a preparatory study of structural relaxations and plastic flow in a two-dimensional idealized atomic glass, the process of melting and quenching through a glass transition has been studied by computer simulation using a molecular dynamics model. In this model, the transition from a solid to a melt was observed to take place when liquid-like structural elements composed of dipoles of five- and seven-sided Voronoi polygons percolate through the two-dimensional structure of distorted hexagons in the form of strings. Such dipoles constitute discrete elements of excess free volume within which liquid like behaviour is established in the sense of reduced cohesion or local elastic moduli. Upon quenching the melt, the percolation condition of liquid-like regions is retained for under-cooled melts between the melting point and a glass transition temperature below which the percolation condition is broken and the thermal expansion is sharply reduced. The simulation that has used empirical pair potentials characteristic of Cu and Zr has substantially underpredicted the melting and glass transition temperatures and overpredicted the thermal expansion of C u x Zr 1-x type glasses. These defects of the model can be partly attributed to the two-dimensional nature of the material, which stores larger concentrations of free volume than a corresponding three-dimensional material. In spite of these quantitative shortcomings, the model gives valuable insight into the topological features of the local atomic configurations at melting and upon vitrification.


Author(s):  
Ke-cheng Chen ◽  
Dong Li ◽  
Li-jun Wang ◽  
Necati Özkan ◽  
Xiao Dong Chen ◽  
...  

Dynamic viscoelastic properties of brown rice kernels were investigated using a dynamic mechanical analyzer (DMA). In order to meet the sample requirements for the DMA and prevent moisture loss of rice kernels during the DMA measurements, necessary precautions were taken. To prevent moisture loss of rice kernels during the DMA measurements at temperatures ranging from room temperature to 120 degrees centigrade, rice kernels were wrapped with a thin layer of sealing film. Then the wrapped rice kernels were additionally covered with an aluminum foil. Two ends of the wrapped brown rice kernels were cut with a razor blade; subsequently both ends of the cut rice kernels were filed using fine sandpaper to produce near cylindrical rice kernels with parallel ends. The storage modulus of the rice kernels decreased with increasing temperature and moisture content. The loss modulus and the tan delta (loss factor) of the rice kernels as a function of temperature showed clear peaks, which are associated with the glass transition of rice kernels. Two rice varieties had been investigated, and the results showed that the dynamic viscoelastic properties of these rice samples were not significantly different. The glass transition temperatures for the long-grain rice kernels with the moisture contents of 17.4, 13.8, and 10.9 wt.% were determined as 45, 58, and 66 degrees centigrade, respectively.


Author(s):  
Jing Qiao ◽  
Alireza V. Amirkhizi ◽  
Kristin Schaaf ◽  
Sia Nemat-Nasser

In this work, the material properties of a series of fly ash/polyurea composites were studied. Dynamic mechanical analysis was conducted to study the effect of the fly ash volume fraction on the composite’s mechanical properties, i.e., on the material’s frequency- and temperature-dependent storage and loss moduli. It was found that the storage and loss moduli of the composite both increase as the fly ash volume fraction is increased. The storage and loss moduli of the composites relative to those of pure polyurea initially increase significantly with temperature and then slightly decrease or stay flat, attaining peak values around the glass transition region. The glass transition temperature (measured as the temperature at the maximum value of the loss modulus) shifted toward higher temperatures as the fly ash volume fraction increased. Additionally, we present the storage and loss moduli master curves for these materials obtained through application of the time-temperature superposition on measurements taken at a series of temperatures.


Sign in / Sign up

Export Citation Format

Share Document