scholarly journals Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Gijo Raj ◽  
Eric Balnois ◽  
Christophe Baley ◽  
Yves Grohens

The effect of alkali and enzymatic treatments on flax fibre morphology, mechanical, and adhesion properties was investigated. The multilength scale analysis allows for the correlation of the fibre's morphological changes induced by the treatments with mechanical properties to better explain the adherence properties between flax and PLA. The atomic force microscopy (AFM) images revealed the removal of primary layers, upon treatments, down to cellulose microfibrils present in the secondary layers. The variation in mechanical properties was found to be dependent, apart from the crystalline content, on interaction between cellulose microfibrils and encrusting polysaccharides, pectins and hemicelluloses, in the secondary layers. Finally, microbond tests between the modified fibres and PLA emphasize the important role of the outer fibre's surface on the overall composite properties. It was observed here that gentle treatments of the fibres, down to the oriented microfibrils, are favourable to a better adherence with a PLA drop. This paper highlights the important role of amorphous polymers, hemicellulose and pectin, in the optimisation of the adhesion and mechanical properties of flax fibres in the biocomposite.

2018 ◽  
Vol 2 (2) ◽  
pp. 14-17
Author(s):  
Zhuola Zhuola ◽  
Steve Barrett ◽  
Yalda Ashraf Kharaz ◽  
Riaz Akhtar

The mechanical properties of ocular tissues, such as the sclera, have a major impact on healthy eye function, and are governed by the properties and composition of the microstructural components. For example, biomechanical degradation associated with myopia occurs alongside a reduction of proteoglycans (PGs). In this study, the role of PG degradation in the nanomechanical properties of the porcine sclera is explored. In-vitro enzymatic degradation of PGs was conducted with α-amylase and chondroitinase ABC enzymes. Collagen fibril morphology and nanomechanical stiffness were measured with atomic force microscopy (AFM). The elastic modulus of the tissue was reduced in all enzyme-treated samples relative to controls. In addition, collagen fibril organization was disrupted by PG depletion. Our data demonstrate that PGs play an important role in determining not only the mechanical properties at these length scales, but also collagen fibril arrangement.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuri M. Efremov ◽  
Svetlana L. Kotova ◽  
Anastasia A. Akovantseva ◽  
Peter S. Timashev

Abstract Background The nucleus, besides its functions in the gene maintenance and regulation, plays a significant role in the cell mechanosensitivity and mechanotransduction. It is the largest cellular organelle that is often considered as the stiffest cell part as well. Interestingly, the previous studies have revealed that the nucleus might be dispensable for some of the cell properties, like polarization and 1D and 2D migration. Here, we studied how the nanomechanical properties of cells, as measured using nanomechanical mapping by atomic force microscopy (AFM), were affected by the removal of the nucleus. Methods The mass enucleation procedure was employed to obtain cytoplasts (enucleated cells) and nucleoplasts (nuclei surrounded by plasma membrane) of two cell lines, REF52 fibroblasts and HT1080 fibrosarcoma cells. High-resolution viscoelastic mapping by AFM was performed to compare the mechanical properties of normal cells, cytoplasts, and nucleoplast. The absence or presence of the nucleus was confirmed with fluorescence microscopy, and the actin cytoskeleton structure was assessed with confocal microscopy. Results Surprisingly, we did not find the softening of cytoplasts relative to normal cells, and even some degree of stiffening was discovered. Nucleoplasts, as well as the nuclei isolated from cells using a detergent, were substantially softer than both the cytoplasts and normal cells. Conclusions The cell can maintain its mechanical properties without the nucleus. Together, the obtained data indicate the dominating role of the actomyosin cytoskeleton over the nucleus in the cell mechanics at small deformations inflicted by AFM.


Tribology ◽  
2006 ◽  
Author(s):  
A. H. Jayatissa ◽  
D. Wagner ◽  
S. Sorin ◽  
N. X. Randall

The mechanical properties of CrN films coated by radio frequency (rf) magnetron sputtering method were investigated. CrN films were coated on stainless steel, silicon wafer and glass substrates using sputtering of a Cr target in nitrogen ambient. The films were coated by varying the deposition temperature, nitrogen partial pressure and rf power density. The films coated were characterized by nanoindentation method, microhardness, optical, and corrosion tests. In order to use CrN as mechanical coating material, the surface roughness, hardness and adhesion properties have to be determined. The film properties were measured using atomic force microscopy and nanoindentation method and analyzed as a function of deposition conditions. It was found that these properties can be varied by changing the deposition conditions.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 662
Author(s):  
L.A. Can-Herrera ◽  
A.I. Oliva ◽  
M.A.A. Dzul-Cervantes ◽  
O.F. Pacheco-Salazar ◽  
J.M. Cervantes-Uc

The aim of this work is to investigate the effect of the applied voltage on the morphological and mechanical properties of electrospun polycaprolactone (PCL) scaffolds for potential use in tissue engineering. The morphology of the scaffolds was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and the BET techniques for measuring the surface area and pore volume. Stress-strain curves from tensile tests were obtained for estimating the mechanical properties. Additional studies for detecting changes in the chemical structure of the electrospun PCL scaffolds by Fourier transform infrared were performed, while contact angle and X-ray diffraction analysis were realized for determining the wettability and crystallinity, respectively. The SEM, AFM and BET results demonstrate that the electrospun PCL fibers exhibit morphological changes with the applied voltage. By increasing the applied voltage (10 to 25 kV) a significate influence was observed on the fiber diameter, surface roughness, and pore volume. In addition, tensile strength, elongation, and elastic modulus increase with the applied voltage, the crystalline structure of the fibers remains constant, and the surface area and wetting of the scaffolds diminish. The morphological and mechanical properties show a clear correlation with the applied voltage and can be of great relevance for tissue engineering.


2015 ◽  
Vol 1 (1) ◽  
pp. 82
Author(s):  
Ensanya Ali. Abou Neel ◽  
Wojciech Chrzanowski

Objectives: Regardless of the excellent adhesive and biological properties of glass ionomer cements (GICs), their poor mechanical properties and abrasion resistance limit their application to non-load bearing areas. This study aimed to investigate the effect of flax fibres incorporation on surface and mechanical properties of GIC filling materials. Methods: Short chopped flax fibres were randomly incorporated into GIC at 0, 0.5, 1, 2.5, 5 and 25 wt%. Surface hardness, distribution of different phases, stiffness map, phase separation and uniformity of the material were investigated. Results: Addition of flax fibres produced no significant change in Vicker hardness number of GIC. Qualitative imaging using atomic force microscopy showed the presence of a single phase in GIC, while biphasic structure was observed for flax fibres modified GICs (FFMGICs). For all tested formulations, the flax fibres, however, were uniformly distributed and well integrated within the GIC matrix without any visible interfacial separation. Incorporation of flax fibres was associated with a significant increase in surface roughness and stiffness. The roughness values obtained for all tested formulations, however, are far below the threshold values for bacterial adhesion and plaque accumulation. Conclusions: Flax fibres modified GICs could be potentially used in high stress bearing areas.  


2016 ◽  
Vol 110 (3) ◽  
pp. 148a
Author(s):  
Maria Carmela Lauriola ◽  
Massimiliano Papi ◽  
Giuseppe Maulucci ◽  
Gabriele Ciasca ◽  
Valentina Palmieri ◽  
...  

2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


Sign in / Sign up

Export Citation Format

Share Document