scholarly journals Novel Interventional Approaches for ALI/ARDS: Cell-Based Gene Therapy

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ying-Gang Zhu ◽  
Jie-Ming Qu ◽  
Jing Zhang ◽  
Hong-Ni Jiang ◽  
Jin-Fu Xu

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), continue to be a major cause of morbidity and mortality in critically ill patients. The present therapeutic strategies for ALI/ARDS including supportive care, pharmacological treatments, and ventilator support are still controversial. More scientists are focusing on therapies involving stem cells, which have self-renewing capabilities and differentiate into multiple cell lineages, and, genomics therapy which has the potential to upregulate expression of anti-inflammatory mediators. Recently, the combination of cell and gene therapy which has been demonstrated to provide additive benefit has opened up a new chapter in therapeutic strategy and provides a basis for the development of an innovative approach for the prevention and treatment of ALI/ARDS.

2003 ◽  
Vol 4 (7) ◽  
pp. 575-585 ◽  
Author(s):  
A. Musaro ◽  
N. Rosenthal

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 795
Author(s):  
Leticia Matilla-Cuenca ◽  
Alejandro Toledo-Arana ◽  
Jaione Valle

The choice of an effective therapeutic strategy in the treatment of biofilm-related infections is a significant issue. Amyloids, which have been historically related to human diseases, are now considered to be prevailing structural components of the biofilm matrix in a wide range of bacteria. This assumption creates the potential for an exciting research area, in which functional amyloids are considered to be attractive targets for drug development to dissemble biofilm structures. The present review describes the best-characterized bacterial functional amyloids and focuses on anti-biofilm agents that target intrinsic and facultative amyloids. This study provides a better understanding of the different modes of actions of the anti-amyloid molecules to inhibit biofilm formation. This information can be further exploited to improve the therapeutic strategies to combat biofilm-related infections.


2021 ◽  
pp. 153537022098676
Author(s):  
Jing Qian ◽  
Mo Yang ◽  
Qiang Feng ◽  
Xin-Yan Pan ◽  
Li-Lin Yang ◽  
...  

Ras gene mutation or overexpression can lead to tumorigenesis in multiple kinds of cancer, including glioma. However, no drugs targeting Ras or its expression products have been approved for clinical application thus far. Adenoviral gene therapy is a promising method for the treatment of glioma. In this study, the human glioma cell line U251 was co-cultured with recombinant adenovirus KGHV500, and the anti-tumor effects of KGHV500 were determined by MTT, scratch test, Transwell invasion, and apoptosis assays. Then, KGHV500 was delivered via the intravenous injection of CIK cells into glioma xenografts. Tumor volume, ki67 proliferation index, apoptosis levels, and anti-p21Ras scFv expression were tested to evaluate targeting ability, anti-tumor efficacy, and safety. We found that the KGHV500 exhibited anti-tumor activity in U251 cells and increased the intracellular expression of anti-p21Ras scFv compared with that in the control groups. CIK cells delivered KGHV500 to U251 glioma cell xenografts and enhanced anti-tumor activity against glioma xenografts compared to that produced by the control treatment. In conclusion, targeting Ras is a useful therapeutic strategy for gliomas and other Ras-driven cancers, and the delivery of anti-p21Ras scFv by recombinant adenovirus and CIK cells may play an essential role in the therapy of Ras-driven cancers. Impact statement For glioma treatment, gene therapy/virotherapy approach is a promising candidate. The Ras gene is reported to play a vital role in the RAS/RAF/mitogen-activated protein kinase (MAPK) pathway in gliomas. Thus, targeting the Ras gene should be a reasonable potential therapeutic method for glioma. In the present study, we used cytokine-induced killer (CIK) cells as secondary vectors to systemically deliver recombinant adenovirus KGHV500 to glioma xenografts and investigated the anti-tumor efficiency of recombinant adenovirus KGHV500 in vitro and in vivo. Our results expand evidence that targeting Ras is a useful and potential therapeutic strategy for gliomas. We believe that anti-p21Ras scFv delivered by recombinant adenovirus and CIK cells may play an important role in the therapy of Ras-driven cancers.


2017 ◽  
Vol 22 (6) ◽  
pp. 410-414 ◽  
Author(s):  
Russell Witt ◽  
Tippi C. MacKenzie ◽  
William H. Peranteau

2009 ◽  
Vol 55 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Takeshi TERAMURA ◽  
Yuta ONODERA ◽  
Hideki MURAKAMI ◽  
Syunsuke ITO ◽  
Toshihiro MIHARA ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Mija Marinković ◽  
Matilda Šprung ◽  
Maja Buljubašić ◽  
Ivana Novak

In the last two decades, accumulating evidence pointed to the importance of autophagy in various human diseases. As an essential evolutionary catabolic process of cytoplasmatic component digestion, it is generally believed that modulating autophagic activity, through targeting specific regulatory actors in the core autophagy machinery, may impact disease processes. Both autophagy upregulation and downregulation have been found in cancers, suggesting its dual oncogenic and tumor suppressor properties during malignant transformation. Identification of the key autophagy targets is essential for the development of new therapeutic agents. Despite this great potential, no therapies are currently available that specifically focus on autophagy modulation. Although drugs like rapamycin, chloroquine, hydroxychloroquine, and others act as autophagy modulators, they were not originally developed for this purpose. Thus, autophagy may represent a new and promising pharmacologic target for future drug development and therapeutic applications in human diseases. Here, we summarize our current knowledge in regard to the interplay between autophagy and malignancy in the most significant tumor types: pancreatic, breast, hepatocellular, colorectal, and lung cancer, which have been studied in respect to autophagy manipulation as a promising therapeutic strategy. Finally, we present an overview of the most recent advances in therapeutic strategies involving autophagy modulators in cancer.


Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S206
Author(s):  
G. O’Sullivan ◽  
B. Yu ◽  
C. Bailey ◽  
Z. Velickovic ◽  
J. Rasko

Author(s):  
Anuja Sharma ◽  
Jaspreet Singh Anand ◽  
Yatender Kumar

: Alzheimer's Disease (AD), often called the 'Plague of the 21st Century,' is a progressive, irreversible neurodegenerative disorder that leads to the degeneration and death of neurons. Multiple factors, such as genetic defects, epigenetic regulations, environmental factors, or cerebrovascular damage, are a manifestation of the neurodegenerative process that begins to occur decades before the onset of disease. To date, no treatment or therapeutic strategy has proven to be potent in inhibiting its progress or reversing the effects of the disease. The ever-increasing numbers and lack of sufficient therapies that can control or reverse the effects of the disease have propelled research in the direction of devising efficient therapeutic strategies for AD. This review comprehensively discusses the active and passive immunotherapies against Amyloid-β and Tau protein, which remain the popular choice of targets for AD therapeutics. Some of the prospective immunotherapies against Aβ plaques have failed due to various reasons. Much of the research is focused on targeting Tau, specifically, targeting the mid-region of extracellular Tau due to their potential to prevent seeding and hence the spread of neurofibrillary tangles (NFTs). Thus, there is a need to thoroughly understand the disease onset mechanisms and discover effective therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document