scholarly journals Apple Procyanidins Suppress Amyloidβ-Protein Aggregation

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Toshihiko Toda ◽  
Tadahiro Sunagawa ◽  
Tomomasa Kanda ◽  
Motoyuki Tagashira ◽  
Takuji Shirasawa ◽  
...  

Procyanidins (PCs) are major components of the apple polyphenols (APs). We previously reported that treatment with PC extended the mean lifespan ofCaenorhabditis elegans(Sunagawa et al., 2011). In order to estimate the neuroprotective effects of PC, we investigated the antiaggregative activity of PC on amyloidβ-protein (Aβ) aggregation, which is a pathological hallmark of Alzheimer's disease. We herein report that PC significantly suppressed Aβ42 aggregation and dissociated Aβ42 aggregates in a dose-dependent manner, indicating that PC is a potent suppressor of Aβaggregation. Furthermore, PC significantly inhibited Aβ42 neurotoxicity and stimulated proliferation in PC-12 cells. These results suggested that the PC and AP acted as neuroprotective factors against toxic Aβaggregates.

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2334 ◽  
Author(s):  
Muhammad Imran Khan ◽  
Jin Hyuk Shin ◽  
Min Yong Kim ◽  
Tai Sun Shin ◽  
Jong Deog Kim

Alzheimer’s disease (AD) is the most frequent type of dementia affecting memory, thinking and behaviour. The major hallmark of the disease is pathological neurodegeneration due to abnormal aggregation of Amyloid beta (Aβ) peptides generated by β- and γ-secretases via amyloidogenic pathway. Purpose of the current study was to evaluate the effects of theasaponin E1 on the inhibition of Aβ producing β-, γ-secretases (BACE1, PS1 and NCT) and acetylcholinesterase and activation of the non-amyloidogenic APP processing α-secretase (ADAM10). Additionally, theasaponin E1 effects on Aβ degrading and clearing proteins neprilysin and insulin degrading enzyme (IDE). The effect of theasaponin E1 on these crucial enzymes was investigated by RT-PCR, ELISA, western blotting and fluorometric assays using mouse neuroblastoma cells (SweAPP N2a). theasaponin E1 was extracted and purified from green tea seed extract via HPLC, and N2a cells were treated with different concentrations for 24 h. Gene and protein expression in the cells were measured to determine the effects of activation and/or inhibition of theasaponin E1 on β- and γ-secretases, neprilysin and IDE. Results demonstrated that theasaponin E1 significantly reduced Aβ concentration by activation of the α-secretase and neprilysin. The activities of β- and γ-secretase were reduced in a dose-dependent manner due to downregulation of BACE1, presenilin, and nicastrin. Similarly, theasaponin E1 significantly reduced the activity of acetylcholinesterase. Overall, from the results it is concluded that green tea seed extracted saponin E1 possess therapeutic significance as a neuroprotective natural product recommended for the treatment of Alzheimer’s disease.


2013 ◽  
Vol 781-784 ◽  
pp. 643-646
Author(s):  
Xiao Lin ◽  
Li Yu

In this study, we aim to investigate the effect of curcumin on the expression of a-synuclein in the APPswe/PS1dE9 double transgenic mice. APPswe/PS1dE9 double transgenic mice were used as AD (Alzheimer's disease) model and fed with different concentrations of curcumin every day for 6 months, then immunohistochemistry method were used to detect the expression of a-synuclein in hippocampus of mice. The expression of a-syn in hippocampal neuron was decreased significantly after treated with 0.16g/kg to 1.0g/kg curcumin, the change was apparent in dose-dependent manner (P<0.05). a-synuclein pay an important role in the genesis and development of Alzheimer's disease and decreased level of a-synuclein might contribute to the neuroprotective effect of Curcumin, which may become a new target for the prevention and treatment of Alzheimer's disease.


2021 ◽  
pp. 1-12
Author(s):  
Shiwani Kumari ◽  
Ambica Singh ◽  
Abhinay Kumar Singh ◽  
Yudhishthir Yadav ◽  
Swati Bajpai ◽  
...  

Background: Alzheimer’s disease (AD) is the progressive brain disorder which degenerates brain cells connection and causes memory loss. Although AD is irreversible, it is not impossible to arrest or slow down the progression of the disease. However, this would only be possible if the disease is diagnosed at an early stage, and early diagnosis requires clear understanding of the pathogenesis at molecular level. Overactivity of GSK-3β and p53 accounts for tau hyperphosphorylation and the formation of amyloid-β plaques. Objective: Here, we explored GSK-3β and p53 as blood-based biomarkers for early detection of AD. Methods: The levels of GSK-3β, p53, and their phosphorylated states were measured using surface plasmon resonance and verified using western blot in serum from AD, mild cognitive impairment (MCI), and geriatric-control (GC) subjects. The neurotoxic SH-SY5Y cell line was treated with antioxidant Emblica Officinalis (EO) for rescue effect. Results: GSK-3β, p53, and their phosphorylated states were significantly over expressed (p >  0.001) in AD and MCI compared to GC and can differentiate AD and MCI from GC. The expression level of GSK-3β and p53 proteins were found to be downregulated in a dose-dependent manner after the treatment with EO in amyloid-b-induced neurotoxic cells. Conclusion: These proteins can serve as potential blood markers for the diagnosis of AD and EO can suppress their level. This work has translational value and clinical utility in the future.


2016 ◽  
Vol 85 ◽  
pp. 218-224 ◽  
Author(s):  
Kaitlin M. Moore ◽  
Renee E. Girens ◽  
Sara K. Larson ◽  
Maria R. Jones ◽  
Jessica L. Restivo ◽  
...  

2020 ◽  
Vol 77 (3) ◽  
pp. 1095-1105
Author(s):  
Stanislav Sutovsky ◽  
Robert Petrovic ◽  
Maria Fischerova ◽  
Viera Haverlikova ◽  
Barbara Ukropcova ◽  
...  

Background: Genetic risk factors play an important role in the pathogenesis of Alzheimer’s disease (AD). However, the gene-gene interaction (epistasis) between specific allelic variants is only partially understood. Objective: In our study, we examined the presence of the ɛ4 allele of apolipoprotein E (APOE) and the presence of C677T and A1298C (rs1801133 and rs1801131) polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with AD and controls. We also evaluated the epistatic interaction between MTHFR and the APOE variants. Methods: A total of 564 patients with AD and 534 cognitively unimpaired age-matched controls were involved in the study. Results: The presence of the ɛ4 allele of APOE increases the risk of developing AD in a dose-dependent manner (OR 32.7: homozygotes, 15.6: homozygotes + heterozygotes, 14.3: heterozygotes). The combination of genotypes also increases the risk of developing AD in a dose-dependent manner: OR 18.3 (APOE 4/X and 4/4 + CT rs1801133), OR 19.4 (APOE 4/X and 4/4 + CT rs1801133 + AC rs1801131), OR 22.4 (APOE 4/X and 4/4 + TT rs1801133), and OR 21.2 (APOE 4/X and 4/4 + CC rs1801131). Homozygotes for variant alleles of MTHFR as well as patients with AD had significantly higher levels of homocysteine than homozygotes for standard alleles or controls. Conclusion: Homozygotes for APOE4 and carriers of APOE4 with TT genotype of rs1801133 were found to be at the highest risk of developing AD. These findings suggest that the epistatic interaction of specific gene variants can have a significant effect on the development of AD.


2002 ◽  
Vol 38 ◽  
pp. 37-49 ◽  
Author(s):  
Janelle Nunan ◽  
David H Small

The proteolytic processing of the amyloid-beta protein precursor plays a key role in the development of Alzheimer's disease. Cleavage of the amyloid-beta protein precursor may occur via two pathways, both of which involve the action of proteases called secretases. One pathway, involving beta- and gamma-secretase, liberates amyloid-beta protein, a protein associated with the neurodegeneration seen in Alzheimer's disease. The alternative pathway, involving alpha-secretase, precludes amyloid-beta protein formation. In this review, we describe the progress that has been made in identifying the secretases and their potential as therapeutic targets in the treatment or prevention of Alzheimer's disease.


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


Sign in / Sign up

Export Citation Format

Share Document