scholarly journals Emerging Role for Epithelial Polarity Proteins of the Crumbs Family as Potential Tumor Suppressors

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Patrick Laprise

Defects in apical-basal polarity regulation are associated with tissue overgrowth and tumorogenesis, yet the molecular mechanisms linking epithelial polarity regulators to hyperplasia or neoplasia remain elusive. In addition, exploration of the expression and function of the full complement of proteins required for the polarized architecture of epithelial cells in the context of cancer is awaited. This paper provides an overview of recent studies performed onDrosophilaand vertebrates showing that apical polarity proteins of the Crumbs family act to repress tissue growth and epithelial to mesenchymal transition. Thus, these proteins emerge as potential tumor suppressors. Interestingly, analysis of the molecular function of Crumbs proteins reveals a function for these polarity regulators in junctional complexes stability and control of signaling pathways regulating proliferation and apoptosis. Thereby, these studies provide a molecular basis explaining how regulation of epithelial polarity is coupled to tumorogenesis.

2019 ◽  
Vol 132 (23) ◽  
Author(s):  
Wenhui Zhou ◽  
Kayla M. Gross ◽  
Charlotte Kuperwasser

ABSTRACT The transcription factor Snai2, encoded by the SNAI2 gene, is an evolutionarily conserved C2H2 zinc finger protein that orchestrates biological processes critical to tissue development and tumorigenesis. Initially characterized as a prototypical epithelial-to-mesenchymal transition (EMT) transcription factor, Snai2 has been shown more recently to participate in a wider variety of biological processes, including tumor metastasis, stem and/or progenitor cell biology, cellular differentiation, vascular remodeling and DNA damage repair. The main role of Snai2 in controlling such processes involves facilitating the epigenetic regulation of transcriptional programs, and, as such, its dysregulation manifests in developmental defects, disruption of tissue homeostasis, and other disease conditions. Here, we discuss our current understanding of the molecular mechanisms regulating Snai2 expression, abundance and activity. In addition, we outline how these mechanisms contribute to disease phenotypes or how they may impact rational therapeutic targeting of Snai2 dysregulation in human disease.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


Oncogene ◽  
2021 ◽  
Vol 40 (13) ◽  
pp. 2355-2366
Author(s):  
Laura C. A. Galbraith ◽  
Ernest Mui ◽  
Colin Nixon ◽  
Ann Hedley ◽  
David Strachan ◽  
...  

AbstractPeroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 555
Author(s):  
Soyoung Hur ◽  
Eungyeong Jang ◽  
Jang-Hoon Lee

Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds—kaempferol and quercetin—against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


Open Biology ◽  
2013 ◽  
Vol 3 (6) ◽  
pp. 130067 ◽  
Author(s):  
Gopal P. Sapkota

The signalling pathways downstream of the transforming growth factor beta (TGFβ) family of cytokines play critical roles in all aspects of cellular homeostasis. The phosphorylation and activation of p38 mitogen-activated protein kinase (MAPK) has been implicated in TGFβ-induced epithelial-to-mesenchymal transition and apoptosis. The precise molecular mechanisms by which TGFβ cytokines induce the phosphorylation and activation of p38 MAPK are unclear. In this study, I demonstrate that TGFβ-activated kinase 1 (TAK1/MAP3K7) does not play a role in the TGFβ-induced phosphorylation and activation of p38 MAPK in MEFs and HaCaT keratinocytes. Instead, RNAi -mediated depletion of MAP3K4 and MAP3K10 results in the inhibition of the TGFβ-induced p38 MAPK phosphorylation. Furthermore, the depletion of MAP3K10 from cells homozygously knocked-in with a catalytically inactive mutant of MAP3K4 completely abolishes the TGFβ-induced phosphorylation of p38 MAPK, implying that among MAP3Ks, MAP3K4 and MAP3K10 are sufficient for mediating the TGFβ-induced activation of p38 MAPK.


Endocrinology ◽  
2021 ◽  
Author(s):  
Kazuya Kusama ◽  
Yuta Fukushima ◽  
Kanoko Yoshida ◽  
Mana Azumi ◽  
Mikihiro Yoshie ◽  
...  

Abstract Endometriosis is characterized by inflammation and fibrotic changes. Our previous study using a mouse model showed that proinflammatory factors present in peritoneal hemorrhage exacerbated inflammation in endometriosis-like grafts, at least in part through the activation of prostaglandin (PG) E2 receptor and protease-activated receptor (PAR). In addition, menstruation-related factors, PGE2 and thrombin, a PAR1 agonist (P/T) induced epithelial-mesenchymal transition (EMT) of endometrial cells under hypoxia. However, the molecular mechanisms by which P/T induce development of endometriosis have not been fully characterized. To investigate the effects of P/T, RNA extracted from endometrial stromal cells (ESCs) treated with P/T were subjected to RNA sequence analysis, and identified activin A, FOS, GATA2 as upregulated genes. Activin A increased the expression of connective tissue growth factor (CTGF) and mesenchymal marker genes in ESCs. CTGF induced the expression of fibrosis marker type I collagen, fibronectin, and α-smooth muscle actin (αSMA), indicating fibroblast to myofibroblast transdifferentiation (FMT) of ESCs. In addition, activin A, FOS, GATA2, CTGF, and αSMA were localized in endometriosis lesions. Taken together, our data show that P/T induce changes resembling EMT and FMT in ectopic ESCs derived from retrograde menstruation, and that these are associated with fibrotic changes in the lesions. Pharmacological means that block P/T-induced activin A and CTGF signaling may be strategies to inhibit fibrosis in endometriotic lesions.


2018 ◽  
Vol 13 (5) ◽  
pp. 659-668 ◽  
Author(s):  
Sara Lovisa ◽  
Giannicola Genovese ◽  
Silvio Danese

Abstract Intestinal fibrosis is an inevitable complication in patients with inflammatory bowel disease [IBD], occurring in its two major clinical manifestations: ulcerative colitis and Crohn’s disease. Fibrosis represents the final outcome of the host reaction to persistent inflammation, which triggers a prolonged wound healing response resulting in the excessive deposition of extracellular matrix, eventually leading to intestinal dysfunction. The process of epithelial-to-mesenchymal transition [EMT] represents an embryonic program relaunched during wound healing, fibrosis and cancer. Here we discuss the initial observations and the most recent findings highlighting the role of EMT in IBD-associated intestinal fibrosis and fistulae formation. In addition, we briefly review knowledge on the cognate process of endothelial-to-mesenchymal transition [EndMT]. Understanding EMT functionality and the molecular mechanisms underlying the activation of this mesenchymal programme will permit designing new therapeutic strategies to halt the fibrogenic response in the intestine.


Sign in / Sign up

Export Citation Format

Share Document