scholarly journals Pharmacological Modulation of Dopamine Receptor D2-Mediated Transmission Alters the Metabolic Phenotype of Diet Induced Obese and Diet Resistant C57Bl6 Mice

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
J. E. de Leeuw van Weenen ◽  
E. T. Parlevliet ◽  
J. P. Schröder-van der Elst ◽  
S. A. van den Berg ◽  
K. Willems van Dijk ◽  
...  

High fat feeding induces a variety of obese and lean phenotypes in inbred rodents. Compared to Diet Resistant (DR) rodents, Diet Induced Obese (DIO) rodents are insulin resistant and have a reduced dopamine receptor D2 (DRD2) mediated tone. We hypothesized that this differing dopaminergic tone contributes to the distinct metabolic profiles of these animals. C57Bl6 mice were classified as DIO or DR based on their weight gain during 10 weeks of high fat feeding. Subsequently DIO mice were treated with the DRD2 agonist bromocriptine and DR mice with the DRD2 antagonist haloperidol for 2 weeks. Compared to DR mice, the bodyweight of DIO mice was higher and their insulin sensitivity decreased. Haloperidol treatment reduced the voluntary activity and energy expenditure of DR mice and induced insulin resistance in these mice. Conversely, bromocriptine treatment tended to reduce bodyweight and voluntary activity, and reinforce insulin action in DIO mice. These results show that DRD2 activation partly redirects high fat diet induced metabolic anomalies in obesity-prone mice. Conversely, blocking DRD2 induces an adverse metabolic profile in mice that are inherently resistant to the deleterious effects of high fat food. This suggests that dopaminergic neurotransmission is involved in the control of metabolic phenotype.

2015 ◽  
Vol 308 (7) ◽  
pp. E545-E553 ◽  
Author(s):  
Adam B. Salmon ◽  
Chad Lerner ◽  
Yuji Ikeno ◽  
Susan M. Motch Perrine ◽  
Roger McCarter ◽  
...  

The extension of lifespan due to reduced insulin-like growth factor 1 (IGF-I) signaling in mice has been proposed to be mediated through alterations in metabolism. Previously, we showed that mice homozygous for an insertion in the Igf1 allele have reduced levels of IGF-I, are smaller, and have an extension of maximum lifespan. Here, we tested whether this specific reduction of IGF-I alters glucose metabolism both on normal rodent chow and in response to high-fat feeding. We found that female IGF-I-deficient mice were lean on a standard rodent diet but paradoxically displayed an insulin-resistant phenotype. However, these mice gained significantly less weight than normal controls when placed on a high-fat diet. In control animals, insulin response was significantly impaired by high-fat feeding, whereas IGF-I-deficient mice showed a much smaller shift in insulin response after high-fat feeding. Gluconeogenesis was also elevated in the IGF-I-deficient mice relative to controls on both normal and high-fat diet. An analysis of metabolism and respiratory quotient over 24 h indicated that the IGF-I-deficient mice preferentially utilized fatty acids as an energy source when placed on a high-fat diet. These results indicate that reduction in the circulating and tissue IGF-I levels can produce a metabolic phenotype in female mice that increases peripheral insulin resistance but renders animals resistant to the deleterious effects of high-fat feeding.


2010 ◽  
Vol 298 (6) ◽  
pp. E1226-E1235 ◽  
Author(s):  
Nishanth E. Sunny ◽  
Santhosh Satapati ◽  
Xiaorong Fu ◽  
TianTeng He ◽  
Roshi Mehdibeigi ◽  
...  

Hepatic ketogenesis provides a vital systemic fuel during fasting because ketone bodies are oxidized by most peripheral tissues and, unlike glucose, can be synthesized from fatty acids via mitochondrial β-oxidation. Since dysfunctional mitochondrial fat oxidation may be a cofactor in insulin-resistant tissue, the objective of this study was to determine whether diet-induced insulin resistance in mice results in impaired in vivo hepatic fat oxidation secondary to defects in ketogenesis. Ketone turnover (μmol/min) in the conscious and unrestrained mouse was responsive to induction and diminution of hepatic fat oxidation, as indicated by an eightfold rise during the fed (0.50+/−0.1)-to-fasted (3.8+/−0.2) transition and a dramatic blunting of fasting ketone turnover in PPARα−/− mice (1.0+/−0.1). C57BL/6 mice made obese and insulin resistant by high-fat feeding for 8 wk had normal expression of genes that regulate hepatic fat oxidation, whereas 16 wk on the diet induced expression of these genes and stimulated the function of hepatic mitochondrial fat oxidation, as indicated by a 40% induction of fasting ketogenesis and a twofold rise in short-chain acylcarnitines. Together, these findings indicate a progressive adaptation of hepatic ketogenesis during high-fat feeding, resulting in increased hepatic fat oxidation after 16 wk of a high-fat diet. We conclude that mitochondrial fat oxidation is stimulated rather than impaired during the initiation of hepatic insulin resistance in mice.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Bo-Htay ◽  
T Shwe ◽  
S Palee ◽  
T Pattarasakulchai ◽  
K Shinlapawittayatorn ◽  
...  

Abstract Background D-galactose (D-gal) induced ageing has been shown to exacerbate left ventricular (LV) dysfunction via worsening of apoptosis and mitochondrial dysfunction in the heart of obese rats. Hyperbaric oxygen therapy (HBOT) has been demonstrated to exert anti-inflammatory and anti-apoptotic effects in multiple neurological disorders. However, the cardioprotective effect of HBOT on inflammation, apoptosis, LV and mitochondrial functions in D-gal induced ageing rats in the presence of obese-insulin resistant condition has never been investigated. Purpose We sought to determine the effect of HBOT on inflammation, apoptosis, mitochondrial functions and LV function in pre-diabetic rats with D-gal induced ageing. We hypothesized that HBOT attenuates D-gal induced cardiac mitochondrial dysfunctions and reduces inflammation and apoptosis, leading to improved LV function in pre-diabetic rats. Methods Forty-eight male Wistar rats were fed with either normal diet or high-fat diet for 12 weeks. Then, rats were treated with either vehicle groups (0.9% NSS, subcutaneous injection (SC)) or D-gal groups (150 mg/kg/day, SC) for 8 weeks. At week 21, rats in each group were equally divided into 6 sub-groups: normal diet fed rats treated with vehicle (NDV) sham, normal diet fed rats treated with D-gal (NDDg) sham, high fat diet fed rats treated with D-gal (HFDg) sham, high fat diet fed rats treated with vehicle (HFV) + HBOT, NDDg + HBOT and HFDg + HBOT. Sham treated rats were given normal concentration of O2 (flow rate of 80 L/min, 1 ATA for 60 minutes), whereas HBOT treated rats were subjected to 100% O2 (flow rate of 250 L/min, 2 ATA for 60 minutes), given once daily for 2 weeks. Results Under obese-insulin resistant condition, D-gal-induced ageing aggravated LV dysfunction (Fig 1A) and impaired cardiac mitochondrial function, increased cardiac inflammatory and apoptotic markers (Fig 1B). HBOT markedly reduced cardiac TNF-α level and TUNEL positive apoptotic cells, and improved cardiac mitochondrial function as indicated by decreased mitochondrial ROS production, mitochondrial depolarization and mitochondrial swelling, resulting in the restoration of the normal LV function in HFV and NDDg rats, compared to sham NDDg rats. In addition, in HFDg treated rats, HBOT attenuated cardiac TNF-α level, TUNEL positive apoptotic cells and cardiac mitochondrial dysfunction, compared to sham HFDg rats, leading to improved cardiac function as indicated by increased %LV ejection fraction (LVEF) (Figure 1). Conclusion HBOT efficiently alleviates D-gal-induced-age-related LV dysfunction through mitigating inflammation, apoptosis and mitochondrial dysfunction in pre-diabetic rats. Figure 1 Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): 1. The National Science and Technology Development Agency Thailand, 2. Thailand Research Fund Grants


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ziyi Zhang ◽  
Xiaoyu Chen ◽  
Yuh Jiun Loh ◽  
Xin Yang ◽  
Chenhong Zhang

Abstract Background Calorie restriction (CR) and intermittent fasting (IF) can promote metabolic health through a process that is partially mediated by gut microbiota modulation. To compare the effects of CR and IF with different dietary structures on metabolic health and the gut microbiota, we performed an experiment in which mice were subjected to a CR or IF regimen and an additional IF control (IFCtrl) group whose total energy intake was not different from that of the CR group was included. Each regimen was included for normal chow and high-fat diet. Results We showed that in normal-chow mice, the IFCtrl regimen had similar positive effects on glucose and lipid metabolism as the CR regimen, but the IF regimen showed almost no influence compared to the outcomes observed in the ad libitum group. IF also resulted in improvements, but the effects were less marked than those associate with CR and IFCtrl when the mice were fed a high-fat diet. Moreover, CR created a stable and unique gut microbial community, while the gut microbiota shaped by IF exhibited dynamic changes in fasting-refeeding cycles. At the end of each cycle, the gut microbiota of the IFCtrl mice was similar to that of the CR mice, and the gut microbiota of the IF mice was similar to that of the ad libitum group. When the abundance of Lactobacillus murinus OTU2 was high, the corresponding metabolic phenotype was improved regardless of eating pattern and dietary structure, which might be one of the key bacterial groups in the gut microbiota that is positively correlated with metabolic amelioration. Conclusion There are interactions among the amount of food intake, the diet structure, and the fasting time on metabolic health. The structure and composition of gut microbiota modified by dietary regimens might contribute to the beneficial effects on the host metabolism.


Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2015 ◽  
Vol 309 (8) ◽  
pp. R835-R844 ◽  
Author(s):  
Emanuele Loro ◽  
Erin L. Seifert ◽  
Cynthia Moffat ◽  
Freddy Romero ◽  
Manoj K. Mishra ◽  
...  

IL-15Rα is the widely expressed primary binding partner for IL-15. Because of the wide distribution in nonlymphoid tissues like skeletal muscle, adipose, or liver, IL-15/IL-15Rα take part in physiological and metabolic processes not directly related to immunity. In fast muscle, lack of IL-15Rα promotes an oxidative switch, with increased mitochondrial biogenesis and fatigue resistance. These effects are predicted to reproduce some of the benefits of exercise and, therefore, improve energy homeostasis. However, the direct effects of IL-15Rα on metabolism and obesity are currently unknown. We report that mice lacking IL-15Rα (IL-15Rα−/−) are resistant to diet-induced obesity (DIO). High-fat diet-fed IL-15Rα−/− mice have less body and liver fat accumulation than controls. The leaner phenotype is associated with increased energy expenditure and enhanced fatty acid oxidation by muscle mitochondria. Despite being protected against DIO, IL-15Rα−/− are hyperglycemic and insulin-resistant. These findings identify novel roles for IL-15Rα in metabolism and obesity.


2019 ◽  
Vol 317 (6) ◽  
pp. E984-E998
Author(s):  
Mark W. Pataky ◽  
Sydney L. Van Acker ◽  
Rhea Dhingra ◽  
Marina M. Freeburg ◽  
Edward B. Arias ◽  
...  

Muscle is a heterogeneous tissue composed of multiple fiber types. Earlier research revealed fiber type-selective postexercise effects on insulin-stimulated glucose uptake (ISGU) from insulin-resistant rats (increased for type IIA, IIB, IIBX, and IIX, but not type I). In whole muscle from insulin-resistant rats, the exercise increase in ISGU is accompanied by an exercise increase in insulin-stimulated AS160 phosphorylation (pAS160), an ISGU-regulating protein. We hypothesized that, in insulin-resistant muscle, the fiber type-selective exercise effects on ISGU would correspond to the fiber type-selective exercise effects on pAS160. Rats were fed a 2-wk high-fat diet (HFD) and remained sedentary (SED) or exercised before epitrochlearis muscles were dissected either immediately postexercise (IPEX) or at 3 h postexercise (3hPEX) using an exercise protocol that previously revealed fiber type-selective effects on ISGU. 3hPEX muscles and SED controls were incubated ± 100µU/mL insulin. Individual myofibers were isolated and pooled on the basis of myosin heavy chain (MHC) expression, and key phosphoproteins were measured. Myofiber glycogen and MHC expression were evaluated in muscles from other SED, IPEX, and 3hPEX rats. Insulin-stimulated pAktSer473 and pAktThr308 were unaltered by exercise in all fiber types. Insulin-stimulated pAS160 was greater for 3hPEX vs. SED on at least one phosphosite (Ser588, Thr642, and/or Ser704) in type IIA, IIBX, and IIB fibers, but not in type I or IIX fibers. Both IPEX and 3hPEX glycogen were decreased versus SED in all fiber types. These results provided evidence that fiber type-specific pAS160 in insulin-resistant muscle may play a role in the previously reported fiber type-specific elevation in ISGU in some, but not all, fiber types.


2019 ◽  
Vol 317 (6) ◽  
pp. E973-E983 ◽  
Author(s):  
Annie Hasib ◽  
Chandani K. Hennayake ◽  
Deanna P. Bracy ◽  
Aimée R. Bugler-Lamb ◽  
Louise Lantier ◽  
...  

Extracellular matrix hyaluronan is increased in skeletal muscle of high-fat-fed insulin-resistant mice, and reduction of hyaluronan by PEGPH20 hyaluronidase ameliorates diet-induced insulin resistance (IR). CD44, the main hyaluronan receptor, is positively correlated with type 2 diabetes. This study determines the role of CD44 in skeletal muscle IR. Global CD44-deficient ( cd44−/−) mice and wild-type littermates ( cd44+/+) were fed a chow diet or 60% high-fat diet for 16 wk. High-fat-fed cd44−/− mice were also treated with PEGPH20 to evaluate its CD44-dependent action. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp (ICv). High-fat feeding increased muscle CD44 protein expression. In the absence of differences in body weight and composition, despite lower clamp insulin during ICv, the cd44−/− mice had sustained glucose infusion rate (GIR) regardless of diet. High-fat diet-induced muscle IR as evidenced by decreased muscle glucose uptake (Rg) was exhibited in cd44+/+ mice but absent in cd44−/− mice. Moreover, gastrocnemius Rg remained unchanged between genotypes on chow diet but was increased in high-fat-fed cd44−/− compared with cd44+/+ when normalized to clamp insulin concentrations. Ameliorated muscle IR in high-fat-fed cd44−/− mice was associated with increased vascularization. In contrast to previously observed increases in wild-type mice, PEGPH20 treatment in high-fat-fed cd44−/− mice did not change GIR or muscle Rg during ICv, suggesting a CD44-dependent action. In conclusion, genetic CD44 deletion improves muscle IR, and the beneficial effects of PEGPH20 are CD44-dependent. These results suggest a critical role of CD44 in promoting hyaluronan-mediated muscle IR, therefore representing a potential therapeutic target for diabetes.


Sign in / Sign up

Export Citation Format

Share Document