scholarly journals Effect of Temperature Change on Geometric Structure of Isolated Mixing Regions in Stirred Vessel

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nor Hanizah Shahirudin ◽  
Alatengtuya ◽  
Norihisa Kumagai ◽  
Takafumi Horie ◽  
Naoto Ohmura

The present work experimentally investigated the effect of temperature change on the geometric structure of isolated mixing regions (IMRs) in a stirred vessel by the decolorization of fluorescent green dye by acid-base neutralization. A four-bladed Rushton turbine was installed in an unbaffled stirred vessel filled with glycerin as a working fluid. The temperature of working fluid was changed in a stepwise manner from 30°C to a certain fixed value by changing the temperature of the water jacket that the vessel was equipped with. The step temperature change can dramatically reduce the elimination time of IMRs, as compared with a steady temperature operation. During the transient process from an initial state to disappearance of IMR, the IMR showed interesting three-dimensional geometrical changes, that are, simple torus with single filament, simple torus without filaments, a combination of crescent shape and circular tori, and doubly entangled torus.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Chayadit Pumaneratkul ◽  
Haruhiko Yamasaki ◽  
Hiroshi Yamaguchi ◽  
Yuhiro Iwamoto

In this study, the CO2-based photovoltaic–thermal hybrid system has been investigated with an objective to increase the power generation efficiency in photovoltaic solar panel and to improve the performance of supercritical CO2 solar Rankine cycle system (SRCS). From a previous study, an improvement of 2% of power generation efficiency was confirmed via experimental investigation. In this study, the temperature distribution on the CO2-based photovoltaic–thermal hybrid system has been numerically and experimentally investigated and confirmed with referenced experimental results. Particularly, in this study, the one-dimensional (1D) calculation of CO2 flow in the cooling tube and three-dimensional (3D) calculation of temperature distribution on the surface of the photovoltaic solar panel are conducted. The typical summer and winter weather conditions are used as the calculation references to investigate the effect of temperature distribution of the photovoltaic solar panel. The results show that the trend of temperature distribution from calculation was confirmed with the experimental data both in summer and winter conditions. Furthermore, in summer condition, the CO2 temperature was increased to a maximum of 28 °C.


2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3685 ◽  
Author(s):  
Marcin Adamczyk ◽  
Paweł Liberadzki ◽  
Robert Sitnik

This paper presents the results of several studies concerning the effect of temperature on digital cameras. Experiments were performed using three different camera models. The presented results conclusively demonstrate that the typical camera design does not adequately take into account the effect of temperature variation on the device’s performance. In this regard, a modified camera design is proposed that exhibits a highly predictable behavior under varying ambient temperature and facilitates thermal compensation. A novel temperature compensation method is also proposed. This compensation model can be applied in almost every existing camera application, as it is compatible with every camera calibration model. A two-dimensional (2D) and three-dimensional (3D) application of the proposed compensation model is also described. The results of the application of the proposed compensation approach are presented herein.


Author(s):  
Imran Qureshi ◽  
Andy D. Smith ◽  
Kam S. Chana ◽  
Thomas Povey

Detailed experimental measurements have been performed to understand the effects of turbine inlet temperature distortion (hot-streaks) on the heat transfer and aerodynamic characteristics of a full-scale unshrouded high pressure turbine stage at flow conditions that are representative of those found in a modern gas turbine engine. To investigate hot-streak migration, the experimental measurements are complemented by three-dimensional steady and unsteady CFD simulations of the turbine stage. This paper presents the time-averaged measurements and computational predictions of rotor blade surface and rotor casing heat transfer. Experimental measurements obtained with and without inlet temperature distortion are compared. Time-mean experimental measurements of rotor casing static pressure are also presented. CFD simulations have been conducted using the Rolls-Royce code Hydra, and are compared to the experimental results. The test turbine was the unshrouded MT1 turbine, installed in the Turbine Test Facility (previously called Isentropic Light Piston Facility) at QinetiQ, Farnborough UK. This is a short duration transonic facility, which simulates engine representative M, Re, Tu, N/T and Tg /Tw at the turbine inlet. The facility has recently been upgraded to incorporate an advanced second-generation temperature distortion generator, capable of simulating well-defined, aggressive temperature distortion both in the radial and circumferential directions, at the turbine inlet.


2021 ◽  
Vol 7 ◽  
Author(s):  
Vasiliki Terzi ◽  
Asimina Athanatopoulou

The present study aims to investigate the effects of the seismic vertical component on the pathology of Xana monument which is a typical caravanserai, constructed circa 1375–1385 and is located in the archeological site of the municipality of Trainapoulis, Greece. The monument’s plan is rectangular and the three-leaf masonry circumferential walls support a hemicylindrical dome constructed by bricks and mortar. The structure consisted of two consecutive parts: one for the travelers and one for the animals. Nowadays, the triangular roof, that covered the structure, and the first part of the monument do not exist. Xana suffers tensile cracks along the interior surface of the dome, a vertical fracture located on the northern wall and vertical tensile cracks located at the openings. A three-dimensional finite element model of the initial state of Xana is constructed. Non-linear material behavior is taken into account as well as soil-structure interaction effects. An adequate number of near-field earthquake events has been used, taking into account that they are related to significant vertical components. The structural seismic analysis is conducted for two cases. The first case refers to the action of the two horizontal-component of ground motions while the second one takes into account the three translational seismic components. The pathology estimation reveals important information concerning the structural effects due to vertical accelerations.


Sign in / Sign up

Export Citation Format

Share Document