scholarly journals Theoretic and Experimental Studies on the Casting of Large Die-Type Parts Made of Lamellar Graphite Grey Pig Irons by Using the Technology of Polystyrene Moulds Casting from Two Sprue Cups

2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Constantin Marta ◽  
Ioan Ruja ◽  
Cinca Ionel Lupinca ◽  
Monica Rosu

This paper presents a comparative analysis between the practical results of pig iron die-type part casting and the results reached by simulation. The insert was made of polystyrene, and the casting was downward vertical. As after the part casting and heat treatment cracks were observed in the part, it became necessary to locate and identify these fissures and to establish some measures for eliminating the casting defects and for locating them. The research method was the comparisons of defects identified through verifications, measurements, and metallographic analyses applied to the cast part with the results of some criteria specific to simulation after simulating the casting process. In order to verify the compatibility between reality and simulation, we then simulated the part casting respecting the real conditions in which it was cast. By visualising certain sections of the cast part during solidification, relevant details occur about the possible evolution of defects. The simulation software was AnyCasting, the measurements were done through nondestructive methods.

2015 ◽  
Vol 751 ◽  
pp. 231-234
Author(s):  
Michal Duchek ◽  
Filip Tikal ◽  
Jan Nachazel ◽  
Bozik Martinek

The use of various types of software for rapid identification of potential problems in manufacturing processes is becoming ever more popular. One of such programs is DEFORM, simulation software for forming and heat treatment processes. The purpose of this study was to construct a 3D model of a specific casting, to identify its critical locations and then select the optimum heat treatment procedure preventing cracking. Results of this work include a detailed analysis of stress and temperature fields in the cast part.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 684 ◽  
Author(s):  
Vasilios Fourlakidis ◽  
Ilia Belov ◽  
Attila Diószegi

The present work provides validation of the ultimate tensile strength computational models, based on full-scale lamellar graphite iron casting process simulation, against previously obtained experimental data. Microstructure models have been combined with modified Griffith and Hall–Petch equations, and incorporated into casting simulation software, to enable the strength prediction for four pearlitic lamellar cast iron alloys with various carbon contents. The results show that the developed models can be successfully applied within the strength prediction methodology along with the simulation tools, for a wide range of carbon contents and for different solidification rates typical for both thin- and thick-walled complex-shaped iron castings.


2017 ◽  
Vol 867 ◽  
pp. 64-70
Author(s):  
N. Nagendran ◽  
N. Gayathri ◽  
V.K. Shanmuganathan ◽  
S. Praveen

Conventional casting process cannot produce parts as strong as forged parts. Also there are chances of many casting defects such as porosity, hot tears, shrinkage, pin holes, blow holes, mould shift flash, slag, short casting, when casting method is used for fabrication. Thus cast parts only have low mechanical properties. Recent trend is to use Squeeze Casting, which results in superior mechanical and casting properties. This technique is a hybrid metal forming process combining features of both casting and forging in one operation. This process is suitable for low melting alloys like iron and nickel with mechanical properties enhancement. Reduction in micro porosity in cast part and also reduction in machining. Historically, the series of LM were developed for high strength, corrosion resistance, and good machinability for many applications. In this study Squeeze Casting process has been used, since it has porosity free equiaxed grain components of LM 25 composition and cylindrical shaped castings were manufactured successfully by squeeze casting machine at high temperature and high pressure. The first part of the study is about the microstructure of the LM 25 Al-7 Si-0.3 Mg-0.5 Fe alloy. The casting products were made by addition of nano particles and without nano particles. The size of bar casted was by squeeze casting process. It was 260 mm*46mm (7 Pieces). Microstructure of Cast without squeeze and without stirrer, without squeeze and with stirrer, with squeeze and with stirrer Alloys was studied. The second part of the work was the heat treatment process of the finished product. Heat treatment process was conducted at 490○C and for the heat treated metals was quenched at 30○C (water) for the heat treated and unheated metal casting product were taken and microstructure were studied. The results were compared before and after the heat treatment process for addition of nano particles and without nano particles.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 539
Author(s):  
Gonçalo M. Gorito ◽  
Aida B. Moreira ◽  
Pedro Lacerda ◽  
Manuel F. Vieira ◽  
Laura M. M. Ribeiro

Cast Ni-Si-B alloys have the potential for high-temperature applications because of their high resistance to wear, impact, corrosion, and oxidation at elevated temperatures due to an appropriate balance of hard phases and austenite that ensures a good compromise between toughness and hardness. In this work, NiSi3B2 specimens, fabricated by the lost-wax casting process, were investigated. Given the complex multiphase cast microstructure, a differential scanning calorimeter (DSC-TGA) analysis was employed to characterize the reactions that occur during solidification and the resulting phases were characterized using scanning electron microscopy (SEM), with energy-dispersive microanalysis (EDS) and backscattered electron (BSE) image and X-ray diffraction (XRD). Due to the presence of hard phases, machining of the Ni-Si-B components can pose additional difficulties. Therefore, the conditions of the solution heat treatment, which might lead to the homogenization of the microstructure, consequently improving its machinability, were also investigated. The results of the heat-treated samples indicated that the dissolution of the eutectic constituent is accompanied by a significant decrease in the hardness (approximately 17%). It is important to emphasize that the solution heat treatments carried out reduced the hardness without affecting the percentage of borides, which will allow improving the machinability without adversely affecting the alloy performance in service.


2013 ◽  
Vol 791-793 ◽  
pp. 550-553 ◽  
Author(s):  
Dong Dong Han ◽  
Cheng Jun Wang ◽  
Juan Chang ◽  
Lei Chen ◽  
Huai Bei Xie

At present, pulley produced in China has been able to meet the demand of domestic and international markets. But there are many problem of the pulley industry in our country, such as too many production enterprises and the low level of export products. And as components of drive system are light weight and raw material price of pulley casting are rising, manufacturing requirements of the pulley are also more and more high. Aiming at the casting defects of pulley that enterprise current product, pulley casting blank model of common material HT250 be made by three-dimension software, numerical simulation of filling and solidification process for pulley sand casting by the casting simulation software Procast, the size and location of the various casting defects were forecasted and analyzed, reflecting the pulley filling and solidification process of the actual situation, due to the thicker pulley rim and less heat dissipation, position of shrinkage is close to the middle of rim [, a method of eliminating defects is proposed to realize sequential solidification, and thus to minimize porosity shrinkage and improve casting performance and reduce casting time and reduce production costs.


Author(s):  
Williams S. Ebhota ◽  
Akhil S. Karun ◽  
Freddie L. Inambao

The study investigates the application of centrifugal casting process in the production of a complex shape component, Pelton turbine bucket. The bucket materials examined were functionally graded aluminium A356 alloy and A356-10%SiCp composite. A permanent mould for the casting of the bucket was designed with a Solidworks software and fabricated by the combination of CNC machining and welding. Oil hardening non-shrinking die steel (OHNS) was chosen for the mould material. The OHNS was heat treated and a hardness of 432 BHN was obtained. The mould was put into use, the buckets of A356 Alloy and A356-10%SiCp composite were cast, cut and machined into specimens. Some of the specimens were given T6 heat treatment and the specimens were prepared according to the designed investigations. The micrographs of A356-10%SiCp composite shows more concentration of SiCp particles at the inner periphery of the bucket. The maximum hardness of As-Cast A356 and A356-10%SiCp composite were 60 BRN and 95BRN respectively, recorded at the inner periphery of the bucket. And these values appreciated to 98BRN and 122BRN for A356 alloy and A356-10%SiCp composite respectively after heat treatment. The prediction curves of the ultimate tensile stress and yield tensile stress show the same trend as the hardness curves.


Author(s):  
Ike Sowden ◽  
George Currier

Casting integrity is essential for providing components that meet design criteria for strength and fatigue performance. As the leading method of manufacturing metal components in the rail industry, maintaining quality and consistency is a continuing struggle for car owners and builders. Internal shrinkage and voids due to insufficient metal flow are issues commonly found in casting molds which are not designed or utilized properly. Using casting simulation software, potential issues can be discovered upfront and robust mold designs can be created that offer a tolerance for the variance or variations in casting conditions that are present in the real world. Strato, Inc. has extensively studied the effectiveness of these simulations in foundries through advanced inspection techniques. It is evident that casting simulations can not only locate, but also explain shrinkage cavities and voids through material density plots and inspection of directional solidification via critical fraction solid time plots. This approach is markedly more efficient than the traditional trial and error method, where mold makers rely on experience and destructive testing to develop acceptable mold designs. With recent advances in simulation software, the labor and time-intensive ways of the past have been supplanted by a more scientific approach to the problem. Understanding the fluid dynamics and thermodynamics of the casting process provides a means of creating a stable, repeatable final product. This higher quality final product can be delivered faster to the customer and at a far less expense by identifying problem areas prior to the tooling and sampling processes. Case-studies explored by the Strato engineering team suggest that using this software decreases the fallout rate.


2014 ◽  
Vol 571-572 ◽  
pp. 1091-1096
Author(s):  
Guang Sheng Zhang ◽  
Fei Zhang

There are many advantages in producing forklift box through the LFC. However, we found shrinkage porosity defects in the interior of castings through simulating the original process by ProCAST casting simulation software. Therefore, we analyzed the defects and improved the technology program. firstly, increased riser in position of shrinkage, Secondly, changed the filling’s way, lastly, selected the best temperature and vacuum by the orthogonal experiment and determined the best technology solution. we found the shrinkage porosity defects have been removed by the improved process. We found the production consistent with the simulation results through verification. Therefore we verify the accuracy of the ProCAST.


2007 ◽  
Vol 30 (1) ◽  
pp. 47-49 ◽  
Author(s):  
Elaine Henna ◽  
Monica L Zilberman ◽  
Valentim Gentil ◽  
Clarice Gorenstein

OBJECTIVE: To test a reliable and easily administered frustration-induction procedure for experimental research. METHOD: One hundred volunteers (81 women, mean age ± SD 34.2 ± 8 years) physically and psychiatrically healthy submitted to the frustration induction procedure were prevented from reaching reward level scores. Subjective aggressiveness feelings related to frustration were self-rated in a 13-item visual analogue scale before and after the procedure. RESULTS: Significant increases in aggressiveness-related feelings were detected in 12 of the 13 items. This was consistent with the observed overt behavior of the subjects during the task. CONCLUSIONS: The frustration-induction procedure is a simple, easy to administer frustration-induction procedure that can be used in experimental studies in normal subjects.


Author(s):  
І. О. Іванов ◽  
Н. П. Супрун ◽  
Ю. О. Ващенко

Investigation of the influence of the peculiarities of raw material composition and structure of traditional and innovative linen textile materials on their hygienic properties. Theoretical and experimental investigations are based on the main positions of textile materials science. In experimental studies, modern standardized methods for determining the hygienic properties of textile materials were used, as well as techniques specially developed taking into account the peculiarities of the operating conditions of underwear. The peculiarities of the operating conditions and the basic functions of hospital underwear were determined. The comparative analysis of hygienic properties of traditional and modern fabrics for underwear was carried out. Using the standardized and the developed methods, adapted to the peculiarities of the conditions of use of the products, the indicators characterizing the processes of water absorption of the materials were experimentally determined. On the basis of the obtained values of quality indicators, a comprehensive assessment of the ability of materials to transfer moisture and air, with the calculation of the arithmetic complex quality index was done. This allowed to determine the material that is optimal in properties, which provides thermophysiological comfort when operating hospital underwear. Using the developed methods, which take into account the specifics of the operating conditions, a comparative analysis of the hygienic properties of traditional and innovative materials for underwear was carried out. A new range of textile materials for underwear has been proposed, taking into account the peculiarities of the operational situation of consumption.


Sign in / Sign up

Export Citation Format

Share Document