scholarly journals Expression and Localization of Ryanodine Receptors in the Frog Semicircular Canal

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Paola Perin ◽  
Laura Botta ◽  
Simona Tritto ◽  
Umberto Laforenza

Several experiments suggest an important role for store-released Ca2+in hair cell organs: drugs targeting IP3and ryanodine (RyRs) receptors affect release from hair cells, and stores are thought to be involved in vesicle recycling at ribbon synapses. In this work we investigated the semicircular canal distribution of RyRs by immunofluorescence, using slice preparations of the sensory epithelium (to distinguish cell types) and flat mounts of the simpler nonsensory regions. RyRs were present in hair cells, mostly in supranuclear spots, but not in supporting cells; as regards nonsensory regions, they were also localized in dark cells and cells from the ductus. No labeling was found in nerve terminals, although nerve branches could be observed in proximity to hair cell RyR spots. The differential expression of RyR isoforms was studied by RT-PCR and immunoblotting, showing the presence of RyRαin both ampulla and canal arm and RyRβin the ampulla only.

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Paola Perin ◽  
Simona Tritto ◽  
Laura Botta ◽  
Jacopo Maria Fontana ◽  
Giulia Gastaldi ◽  
...  

We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.


Development ◽  
2000 ◽  
Vol 127 (15) ◽  
pp. 3373-3383 ◽  
Author(s):  
A. Zine ◽  
T.R. Van De Water ◽  
F. de Ribaupierre

The development of the mammalian cochlea is an example of patterning in the peripheral nervous system. Sensory hair cells and supporting cells in the cochlea differentiate via regional and cell fate specification. The Notch signaling components shows both distinct and overlapping expression patterns of Notch1 receptor and its ligands Jagged1 (Jag1) and Jagged2 (Jag2) in the developing auditory epithelium of the rat. On embryonic day 16 (E16), many precursor cells within the Kolliker's organ immunostained for the presence of both Notch1 and Jag1, while the area of hair cell precursors did not express either Notch1 and Jag1. During initial events of hair cell differentiation between E18 and birth, Notch1 and Jag1 expression predominated in supporting cells and Jag2 in nascent hair cells. Early after birth, Jag2 expression decreased in hair cells while the pattern of Notch1 expression now included both supporting cells and hair cells. We show that the normal pattern of hair cell differentiation is disrupted by alteration of Notch signaling. A decrease of either Notch1 or Jag1 expression by antisense oligonucleotides in cultures of the developing sensory epithelium resulted in an increase in the number of hair cells. Our data suggest that the Notch1 signaling pathway is involved in a complex interplay between the consequences of different ligand-Notch1 combinations during cochlear morphogenesis and the phases of hair cell differentiation.


1989 ◽  
Vol 109 (4) ◽  
pp. 1711-1723 ◽  
Author(s):  
M S Tilney ◽  
L G Tilney ◽  
R E Stephens ◽  
C Merte ◽  
D Drenckhahn ◽  
...  

The sensory epithelium of the chick cochlea contains only two cell types, hair cells and supporting cells. We developed methods to rapidly dissect out the sensory epithelium and to prepare a detergent-extracted cytoskeleton. High salt treatment of the cytoskeleton leaves a "hair border", containing actin filament bundles of the stereocilia still attached to the cuticular plate. On SDS-PAGE stained with silver the intact epithelium is seen to contain a large number of bands, the most prominent of which are calbindin and actin. Detergent extraction solubilizes most of the proteins including calbindin. On immunoblots antibodies prepared against fimbrin from chicken intestinal epithelial cells cross react with the 57- and 65-kD bands present in the sensory epithelium and the cytoskeleton. It is probable that the 57-kD is a proteolytic fragment of the 65-kD protein. Preparations of stereocilia attached to the overlying tectorial membrane contain the 57- and 65-kD bands. A 400-kD band is present in the cuticular plate. By immunofluorescence, fimbrin is detected in stereocilia but not in the hair borders after salt extraction. The prominent 125 A transverse stripping pattern characteristic of the actin cross-bridges in a bundle is also absent in hair borders suggesting fimbrin as the component that gives rise to the transverse stripes. Because the actin filaments in the stereocilia of hair borders still remain as compact bundles, albeit very disordered, there must be an additional uncharacterized protein besides fimbrin that cross-links the actin filaments together.


1997 ◽  
Vol 78 (4) ◽  
pp. 1913-1927 ◽  
Author(s):  
Sergio Masetto ◽  
Manning J. Correia

Masetto, Sergio and Manning J. Correia. Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. J. Neurophysiol. 78: 1913–1927, 1997. The whole cell patch-clamp technique in combination with the slice preparation was used to investigate the electrophysiological properties of pigeon semicircular canal sensory and supporting cells. These properties were also characterized in regenerating neuroepithelia of pigeons preinjected with streptomycin to kill the hair cells. Type II hair cells from each of the three semicircular canals showed similar, topographically related patterns of passive and active membrane properties. Hair cells located in the peripheral regions (zone I, near the planum semilunatum) had less negative resting potentials [0-current voltage in current-clamp mode ( V z) = −62.8 ± 8.7 mV, mean ± SD; n = 13] and smaller membrane capacitances ( C m = 5.0 ± 0.9 pF, n = 14) than cells of the intermediate (zone II; V z = −79.3 ± 7.5 mV, n = 3; C m = 5.9 ± 1.2 pF, n = 4) and central (zone III; V z = −68.0 ± 9.6 mV, n = 17; C m = 7.1 ± 1.5 pF, n = 18) regions. In peripheral hair cells, ionic currents were dominated by a rapidly activating/inactivating outward K+ current, presumably an A-type K+ current ( I KA). Little or no inwardly rectifying current was present in these cells. Conversely, ionic currents of central hair cells were dominated by a slowly activating/inactivating outward K+ current resembling a delayed rectifier K+ current ( I KD). Moreover, an inward rectifying current at voltages negative to −80 mV was present in all central cells. This current was composed of two components: a slowly activating, noninactivating component ( I h), described in photoreceptors and saccular hair cells, and a faster-activating, partially inactivating component ( I K1) also described in saccular hair cells in some species. I h and I K1 were sometimes independently expressed by hair cells. Hair cells located in the intermediate region (zone II) had ionic currents more similar to those of central hair cells than peripheral hair cells. Outward currents in intermediate hair cells activated only slightly more quickly than those of the cells of the central region, but much more slowly than those of the peripheral cells. Additionally, intermediate hair cells, like central hair cells, always expressed an inward rectifying current. The regional distribution of outward rectifying potassium conductances resulted in macroscopic currents differing in peak–to–steady state ratio. We quantified this by measuring the peak ( G p) and steady-state ( G s) slope conductance in the linear region of the current-voltage relationship (−40 to 0 mV) for the hair cells located in the different zones. G p/ G s average values (4.1 ± 2.1, n = 15) from currents in peripheral hair cells were higher than those from intermediate hair cells (2.3 ± 0.8, n = 4) and central hair cells(1.9 ± 0.8, n = 21). The statistically significant differences ( P < 0.001) in G p/ G s ratios could be accounted for by KA channels being preferentially expressed in peripheral hair cells. Hair cell electrophysiological properties in animals pretreated with streptomycin were investigated at ∼3 wk and ∼9–10 wk post injection sequence (PIS). At 3 wk PIS, hair cells (all zones combined) had a statistically significantly ( P < 0.001) lower C m (4.6 ± 1.1 pF, n = 24) and a statistically significantly ( P < 0.01) lower G p(48.4 ± 20.8 nS, n = 26) than control animals ( C m = 6.2 ± 1.6 pF, n = 36; G p = 66 ± 38.9 nS, n = 40). Regional differences in values of V z, as well as the distribution of outward and inward rectifying currents, seen in control animals, were still obvious. But, differences in the relative contribution of the expression of the different ionic current components changed. This result could be explained by a relative decrease in I KA compared with I KD during that interval of regeneration, which was particularly evident in peripheral hair cells. At 9–10 wk PIS, hair cells of all zones had membrane properties not statistically different ( P > 0.5) from those in untreated normal animals. C m was 6.1 ± 1.3 pF ( n = 30) and G p was 75.9 ± 36.6 nS ( n = 30). Thus it appears that during regeneration, avian semicircular canal type II hair cells are likely to recover all their functional properties. At 9–10 wk PIS, regenerated hair cells expressed the same macroscopic ionic currents and had the same topographic distribution as normal hair cells. Measurements obtained at 3 wk PIS suggest that regenerated hair cells come from smaller cells (smaller mean values of C m) endowed with fewer potassium channels (smaller mean values of G p). In addition, differences observed in peripheral hair cells' kinetics and G p/ G s ratios at 3 wk PIS suggest that different ionic channels follow different schedules of expression during hair cell regeneration. We recorded from nine supporting cells both in normal ( n = 5) and regenerating ( n = 4) epithelia. These cells had an average negative resting potential of V z = −49.5 ± 14.1 mV ( n = 9), but no obvious sign of voltage- and time-dependent ionic currents, except for a very weak inward rectification at very negative potentials, both in normal and streptomycin-recovering animals. Therefore, if all semicircular canal supporting cells are like the small sample we tested and if supporting cells are actually the progenitors of regenerating hair cells, then they must change shape, develop hair bundles, become reinnervated, and also acquire a complete set of ionic channels ex novo.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Meenakshi Prajapati-DiNubila ◽  
Ana Benito-Gonzalez ◽  
Erin Jennifer Golden ◽  
Shuran Zhang ◽  
Angelika Doetzlhofer

The mammalian auditory sensory epithelium has one of the most stereotyped cellular patterns known in vertebrates. Mechano-sensory hair cells are arranged in precise rows, with one row of inner and three rows of outer hair cells spanning the length of the spiral-shaped sensory epithelium. Aiding such precise cellular patterning, differentiation of the auditory sensory epithelium is precisely timed and follows a steep longitudinal gradient. The molecular signals that promote auditory sensory differentiation and instruct its graded pattern are largely unknown. Here, we identify Activin A and its antagonist follistatin as key regulators of hair cell differentiation and show, using mouse genetic approaches, that a local gradient of Activin A signaling within the auditory sensory epithelium times the longitudinal gradient of hair cell differentiation. Furthermore, we provide evidence that Activin-type signaling regulates a radial gradient of terminal mitosis within the auditory sensory epithelium, which constitutes a novel mechanism for limiting the number of inner hair cells being produced.


Development ◽  
1998 ◽  
Vol 125 (23) ◽  
pp. 4637-4644 ◽  
Author(s):  
C. Haddon ◽  
Y.J. Jiang ◽  
L. Smithers ◽  
J. Lewis

Mechanosensory hair cells in the sensory patches of the vertebrate ear are interspersed among supporting cells, forming a fine-grained pattern of alternating cell types. Analogies with Drosophila mechanosensory bristle development suggest that this pattern could be generated through lateral inhibition mediated by Notch signalling. In the zebrafish ear rudiment, homologues of Notch are widely expressed, while the Delta homologues deltaA, deltaB and deltaD, coding for Notch ligands, are expressed in small numbers of cells in regions where hair cells are soon to differentiate. This suggests that the delta-expressing cells are nascent hair cells, in agreement with findings for Delta1 in the chick. According to the lateral inhibition hypothesis, the nascent hair cells, by expressing Delta protein, would inhibit their neighbours from becoming hair cells, forcing them to be supporting cells instead. The zebrafish mind bomb mutant has abnormalities in the central nervous system, somites, and elsewhere, diagnostic of a failure of Delta-Notch signalling: in the CNS, it shows a neurogenic phenotype accompanied by misregulated delta gene expression. Similar misregulation of delta; genes is seen in the ear, along with misregulation of a Serrate homologue, serrateB, coding for an alternative Notch ligand. Most dramatically, the sensory patches in the mind bomb ear consist solely of hair cells, which are produced in great excess and prematurely; at 36 hours post fertilization, there are more than ten times as many as normal, while supporting cells are absent. A twofold increase is seen in the number of otic neurons also. The findings are strong evidence that lateral inhibition mediated by Delta-Notch signalling controls the pattern of sensory cell differentiation in the ear.


2020 ◽  
Vol 117 (36) ◽  
pp. 22225-22236
Author(s):  
Xiao-Jun Li ◽  
Angelika Doetzlhofer

Mechano-sensory hair cells within the inner ear cochlea are essential for the detection of sound. In mammals, cochlear hair cells are only produced during development and their loss, due to disease or trauma, is a leading cause of deafness. In the immature cochlea, prior to the onset of hearing, hair cell loss stimulates neighboring supporting cells to act as hair cell progenitors and produce new hair cells. However, for reasons unknown, such regenerative capacity (plasticity) is lost once supporting cells undergo maturation. Here, we demonstrate that the RNA binding protein LIN28B plays an important role in the production of hair cells by supporting cells and provide evidence that the developmental drop in supporting cell plasticity in the mammalian cochlea is, at least in part, a product of declining LIN28B-mammalian target of rapamycin (mTOR) activity. Employing murine cochlear organoid and explant cultures to model mitotic and nonmitotic mechanisms of hair cell generation, we show that loss of LIN28B function, due to its conditional deletion, or due to overexpression of the antagonistic miRNAlet-7g, suppressed Akt-mTOR complex 1 (mTORC1) activity and renders young, immature supporting cells incapable of generating hair cells. Conversely, we found that LIN28B overexpression increased Akt-mTORC1 activity and allowed supporting cells that were undergoing maturation to de-differentiate into progenitor-like cells and to produce hair cells via mitotic and nonmitotic mechanisms. Finally, using the mTORC1 inhibitor rapamycin, we demonstrate that LIN28B promotes supporting cell plasticity in an mTORC1-dependent manner.


1983 ◽  
Vol 96 (3) ◽  
pp. 807-821 ◽  
Author(s):  
L G Tilney ◽  
J C Saunders

Located on the sensory epithelium of the sickle-shaped cochlea of a 7- to 10-d-old chick are approximately 5,000 hair cells. When the apical surface of these cell is examined by scanning microscopy, we find that the length, number, width, and distribution of the stereocilia on each hair cell are predetermined. Thus, a hair cell located at the distal end of the cochlea has 50 stereocilia, the longest of which are 5.5 microns in length and 0.12 microns in width, while those at the proximal end number 300 and are maximally 1.5 microns in length and 0.2 micron in width. In fact, if we travel along the cochlea from its distal to proximal end, we see that the stereocilia on successive hair cells gradually increase in number and width, yet decrease in length. Also, if we look transversely across the cochlea where adjacent hair cells have the same length and number of stereocilia (they are the same distance from the distal end of the cochlea), we find that the stereocilia of successive hair cells become thinner and that the apical surface area of the hair cell proper, not including the stereocilia, decreases from a maximum of 80 microns2 to 15 microns2. Thus, if we are told the length of the longest stereocilium on a hair cell and the width of that stereocilium, we can pinpoint the position of that hair cell on the cochlea in two axes. Likewise, if we are told the number of stereocilia and the apical surface of a hair cell, we can pinpoint the location of that cell in two axes. The distribution of the stereocilia on the apical surface of the cell is also precisely determined. More specifically, the stereocilia are hexagonally packed and this hexagonal lattice is precisely positioned relative to the kinocilium. Because of the precision with which individual hair cells regulate the length, width, number, and distribution of their cell extensions, we have a magnificent object with which to ask questions about how actin filaments that are present within the cell are regulated. Equally interesting is that the gradient in stereociliary length, number, width, and distribution may play an important role in frequency discrimination in the cochlea. This conclusion is amplified by the information presented in the accompanying paper (Tilney, L.G., E.H. Egelman, D.J. DeRosier, and J.C. Saunders, 1983, J. Cell Biol., 96:822-834) on the packing of actin filaments in this stereocilia.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Sung-Ho Huh ◽  
Mark E Warchol ◽  
David M Ornitz

The sensory and supporting cells (SCs) of the organ of Corti are derived from a limited number of progenitors. The mechanisms that regulate the number of sensory progenitors are not known. Here, we show that Fibroblast Growth Factors (FGF) 9 and 20, which are expressed in the non-sensory (Fgf9) and sensory (Fgf20) epithelium during otic development, regulate the number of cochlear progenitors. We further demonstrate that Fgf receptor (Fgfr) 1 signaling within the developing sensory epithelium is required for the differentiation of outer hair cells and SCs, while mesenchymal FGFRs regulate the size of the sensory progenitor population and the overall cochlear length. In addition, ectopic FGFR activation in mesenchyme was sufficient to increase sensory progenitor proliferation and cochlear length. These data define a feedback mechanism, originating from epithelial FGF ligands and mediated through periotic mesenchyme that controls the number of sensory progenitors and the length of the cochlea.


1979 ◽  
Vol 88 (3) ◽  
pp. 427-437 ◽  
Author(s):  
Cheuk W. Li ◽  
Edwin R. Lewis

Structure and development of hair cells in vestibular sensory organs of the larval bullfrog were examined with scanning electron microscopy. The larval vestibular sensory epithelia resembled those of the adult frog. Based on morphology of the ciliary tufts, seven hair cell types were identified. One of them, the type A hair cell, appears to be the morphogenetic precursor of other hair cell types. The size of the stereocilia of type A hair cells is comparable to the surrounding microvilli. The distribution of immature type A hair cells suggests that the periphery of the sensory epithelia is the principal growth zone and the site of formation of new hair cells. However, a far greater number of type A hair cells were found in high frequency sensitive sensory organs (sacculus, amphibian and basilar papillae) than low frequency sensitive vestibular sensory structures (canal cristae, utriculus and lagena). This phenomenon may suggest that the time period required for the maturation of type A hair cells to their ultimate hair cell types in the low frequency sensitive vestibular organs is shorter than in the high frequency sensory structures. It is also possible that the low frequency sensitive vestibular organs may have completed their morphogenetic development in the early larval stages, while morphogenesis of hair cells in the high frequency sensory structures continues throughout the lifetime of a bullfrog.


Sign in / Sign up

Export Citation Format

Share Document