scholarly journals The Role of Complement System in Septic Shock

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jean Charchaflieh ◽  
Jiandong Wei ◽  
Georges Labaze ◽  
Yunfang Joan Hou ◽  
Benjamin Babarsh ◽  
...  

Septic shock is a critical clinical condition with a high mortality rate. A better understanding of the underlying mechanisms is important to develop effective therapies. Basic and clinical studies suggest that activation of complements in the common cascade, for example, complement component 3 (C3) and C5, is involved in the development of septic shock. The involvement of three upstream complement pathways in septic shock is more complicated. Both the classical and alternative pathways appear to be activated in septic shock, but the alternative pathway may be activated earlier than the classical pathway. Activation of these two pathways is essential to clear endotoxin. Recent investigations have shed light on the role of lectin complement pathway in septic shock. Published reports suggest a protective role of mannose-binding lectin (MBL) against sepsis. Our preliminary study of MBL-associated serine protease-2 (MASP-2) in septic shock patients indicated that acute decrease of MASP-2 in the early phase of septic shock might correlate with in-hospital mortality. It is unknown whether excessive activation of these three upstream complement pathways may contribute to the detrimental effects in septic shock. This paper also discusses additional complement-related pathogenic mechanisms and intervention strategies for septic shock.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 774-774
Author(s):  
Marcin Wysoczynski ◽  
Ryan Reca ◽  
Wu Wan ◽  
Magda Kucia ◽  
Marina Botto ◽  
...  

Abstract We reported that complement cascade (CC) becomes activated in bone marrow (BM) during mobilization of hematopoietic stem/progenitor cells (HSPC) by i) immunoglobulin (Ig)-dependent pathway and/or by ii) alternative Ig-independent pathway and, as result of this, iii) several potent bioactive CC anaphylatoxins (C3a, desArgC3a, C5a and desArgC5a) are released (Blood2003;101,3784; Blood2004;103,2071; Blood2005;105,40). To learn more on the role of CC and innate immunity in this process, we compared mobilization in mice that possess defects in CC activation by i) classical pathway (C1q−/−, Ig-deficient), ii) both classical and alternative pathway (C2fB−/−) and in animals iii) that do not generate CC-derived anaphylatoxins (C3−/−, C5−/−). For mobilization, we employed G-CSF and zymosan that activate classical and alternative pathways of CC, respectively. First, we found by ELISA that CC activation in fact correlates with the level of HSPC mobilization. Next, studies in mice deficient in CC activation revealed that CC plays both pivotal and pleiotropic roles in this process. Accordingly, while C1q−/− and C3−/− mice turned out to be easy mobilizers, mobilization was very poor in Ig-deficient, C2fB−/− and C5−/− mice that demonstrate that C3 and C5 cleavage fragments differently control the mobilization of HSPC. To explain this at molecular level, we found that C3 cleavage fragments (C3a, desArgC3a) directly interact with HSPC and increase their responsiveness to SDF-1 gradient and thus prevent uncontrolled egress of HSPC from BM. It explains why C1q−/− and C3−/− mice that do not generate C3 cleavage fragments in BM release easily HSPC into circulation. In contrast, C5 cleavage fragments (C5a, desArgC5a) increase permeability of BM-endothelium and thus are crucial for the egress of HSPC from BM to occur. This explains why mice that do not activate efficient CC such as Ig-deficient, C2fB−/− and C5−/− animals are poor mobilizers. We conclude that the mobilization of HSPC is i) dependent on C activation by the classical or alternative pathway and balanced differently by C3 and C5 cleavage fragments that enhance retention or promote egress of HSPC respectively. Thus, modulation of C activation in BM may help to develop new more efficient strategies for both HSPC mobilization and their homing/engraftment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4301-4301 ◽  
Author(s):  
Mateusz Adamiak ◽  
Ahmed Abdel-Latif ◽  
Janina Ratajczak ◽  
Mariusz Z Ratajczak

Abstract Background . The complement cascade (ComC) is part of the innate immunity system, which is not adaptable and does not change over the course of an individual's lifetime; however, it can be recruited and brought into action by the adaptive immune system. The ComC has several pleiotropic effects, and, as we have previously demonstrated, it is required for mobilization of HSPCs during infection or tissue/organ injuries and responding to pharmacological mobilizing agents (Blood 2004, 103, 2071-2078). The ComC is activated by three pathways: the classical, alternative, and mannose-binding lectin (MBL) pathways. While a requirement for ComC activation and, in particular, the pivotal role of the distal part of complement activation and generation of C5 cleavage fragments was previously demonstrated by us (Leukemia 2009, 23, 2052-2062), mice with mutations to components of the classical and alternative pathways in which the distal pathway of C5 activation remained intact did not show impairment of HSPC mobilization (Leukemia 2010, 24, 1667-1675). However, no studies so far have been performed to address the role of the MBL pathway of ComC activation in triggering the mobilization of HSPCs. The MBL pathway is homologous to the classical pathway, but contains opsonin, MBL, and ficolins instead of C1q. MBL functions by pattern recognition, as opsonin binds to mannose residues on the surface of pathogens and certain cells, and activates the MBL-associated serine proteases, MASP-1, and MASP-2, which can then split C4 (into C4a and C4b) and C2 (into C2a and C2b) to form the classical C3-convertase, as in the classical pathway. Interestingly, it is known that ~10% of the population has defective activation of the MBL pathway. Hypothesis. We hypothesized for first time that the MBL ComC-activation pathway is involved in triggering ComC-mediated mobilization of HSPCs and that MBL deficiency results in poor mobilization. Materials and Methods . In our experiments, 2-month-old, MBL-deficient mice (MBL-/-) and normal wild type (WT) littermates were mobilized for 6 days with G-CSF or AMD3100. Following mobilization, we measured in peripheral blood (PB) i) the total number of white blood cells (WBC), ii) the number of circulating clonogenic colony-forming unit granulocyte/macrophage (CFU-GM) progenitors, and iii) the number of Sca-1+ c-kit+ lineage- (SKL) cells. In parallel, we evaluated activation of the MBL pathway in WT animals after administration of G-CSF and AMD3100. Results . We found that pattern recognition by the MBL ComC activation pathway is involved in pharmacological G-CSF- and AMD3100-induced mobilization of HSPCs, and activation of the MBL pathway was confirmed by ELISA in WT animals. As predicted, MBL KO mice were found to be poor mobilizers. Conclusions . We identified a previously unrecognized role of the MBL pathway in triggering ComC activation in the process of HSPC mobilization. This finding explains the pivotal role of the MBL pathway in triggering activation of the proximal part of the ComC and explains why, even with a deficiency in activation of classical and alternative pathway components, mobilization of HSPCs proceeds normally as long as the MBL pathway is intact. On the other hand, if the MBL pathway of the ComC is defective, neither classical nor alternative pathways can trigger optimal mobilization of HSPCs. Taking into consideration that ~10% of normal people are poor activators of the MBL pathway, we are currently investigating whether MBL deficiency correlates with poor mobilization in these patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 115 (17) ◽  
pp. 3541-3552 ◽  
Author(s):  
Yulia N. Demchenko ◽  
Oleg K. Glebov ◽  
Adriana Zingone ◽  
Jonathan J. Keats ◽  
P. Leif Bergsagel ◽  
...  

Abstract Mutations involving the nuclear factor-κB (NF-κB) pathway are present in at least 17% of multiple myeloma (MM) tumors and 40% of MM cell lines (MMCLs). These mutations, which are apparent progression events, enable MM tumors to become less dependent on bone marrow signals that activate NF-κB. Studies on a panel of 51 MMCLs provide some clarification of the mechanisms through which these mutations act and the significance of classical versus alternative activation of NF-κB. First, only one mutation (NFKB2) selectively activates the alternative pathway, whereas several mutations (CYLD, NFKB1, and TACI) selectively activate the classical pathway. However, most mutations affecting NF-κB–inducing kinase (NIK) levels (NIK, TRAF2, TRAF3, cIAP1&2, and CD40) activate the alternative but often both pathways. Second, we confirm the critical role of TRAF2 in regulating NIK degradation, whereas TRAF3 enhances but is not essential for cIAP1/2-mediated proteasomal degradation of NIK in MM. Third, using transfection to selectively activate the classical or alternative NF-κB pathways, we show virtually identical changes in gene expression in one MMCL, whereas the changes are similar albeit nonidentical in a second MMCL. Our results suggest that MM tumors can achieve increased autonomy from the bone marrow microenvironment by mutations that activate either NF-κB pathway.


Author(s):  
Fengyun Zhou ◽  
Ting Feng ◽  
Xiangqi Lu ◽  
Huicheng Wang ◽  
Yangping Chen ◽  
...  

Abstract Mitochondrial reactive oxygen species (mtROS)-induced apoptosis has been suggested to contribute to myocardial ischemia/reperfusion injury. Interleukin 35 (IL-35), a novel anti-inflammatory cytokine, has been shown to protect the myocardium and inhibit mtROS production. However, its effect on cardiomyocytes upon exposure to hypoxia/reoxygenation (H/R) damage has not yet been elucidated. The present study aimed to investigate the potential protective role and underlying mechanisms of IL-35 in H/R-induced mouse neonatal cardiomyocyte injury. Mouse neonatal cardiomyocytes were challenged to H/R in the presence of IL-35, and we found that IL-35 dose dependently promotes cell viability, diminishes mtROS, maintains mitochondrial membrane potential, and decreases the number of apoptotic cardiomyocytes. Meanwhile, IL-35 remarkably activates mitochondrial STAT3 (mitoSTAT3) signaling, inhibits cytochrome c release, and reduces apoptosis signaling. Furthermore, co-treatment of the cardiomyocytes with the STAT3 inhibitor AG490 abrogates the IL-35-induced cardioprotective effects. Our study identified the protective role of IL-35 in cardiomyocytes following H/R damage and revealed that IL-35 protects cardiomyocytes against mtROS-induced apoptosis through the mitoSTAT3 signaling pathway during H/R.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiaji Hu ◽  
Hanglu Ying ◽  
Jie Yao ◽  
Longhe Yang ◽  
Wenhui Jin ◽  
...  

Nonalcoholic steatohepatitis (NASH) has become one of the serious causes of chronic liver diseases, characterized by hepatic steatosis, hepatocellular injury, inflammation and fibrosis, and lack of efficient therapeutic agents. Palmitoylethanolamide (PEA) is an endogenous bioactive lipid with various pharmacological activities, including anti-inflammatory, analgesic, and neuroprotective effects. However, the effect of PEA on nonalcoholic steatohepatitis is still unknown. Our study aims to explore the potential protective role of PEA on NASH and to reveal the underlying mechanism. In this study, the C57BL/6 mice were used to establish the NASH model through methionine- and choline-deficient (MCD) diet feeding. Here, we found that PEA treatment significantly improved liver function, alleviated hepatic pathological changes, and attenuated the lipid accumulation and hepatic fibrosis in NASH mice induced by MCD diet feeding. Mechanistically, the anti-steatosis effect of PEA may be due to the suppressed expression of ACC1 and CD36, elevated expression of PPAR-α, and the phosphorylation levels of AMPK. In addition, hepatic oxidative stress was greatly inhibited in MCD-fed mice treated with PEA via enhancing the expression and activities of antioxidant enzymes, including GSH-px and SOD. Moreover, PEA exerted a clear anti-inflammatory effect though ameliorating the expression of inflammatory mediators and suppressing the NLRP3 inflammasome pathway activation. Furthermore, the impaired autophagy in MCD-induced mice was reactivated with PEA treatment. Taken together, our research suggested that PEA protects against NASH through the inhibition of inflammation and restoration of autophagy. Thus, PEA may represent an efficient therapeutic agent to treat NASH.


Author(s):  
Jialong Jie ◽  
Ye Xia ◽  
Chun-Hua Huang ◽  
Hongmei Zhao ◽  
Chunfan Yang ◽  
...  

Abstract Phosphorothioate (PS) modifications naturally appear in bacteria and archaea genome and are widely used as antisense strategy in gene therapy. But the chemical effects of PS introduction as a redox active site into DNA (S-DNA) is still poorly understood. Herein, we perform time-resolved spectroscopy to examine the underlying mechanisms and dynamics of the PS oxidation by potent radicals in free model, in dinucleotide, and in S-oligomer. The crucial sulphur-centered hemi-bonded intermediates -P–S∴S–P- were observed and found to play critical roles leading to the stable adducts of -P–S–S–P-, which are backbone DNA lesion products. Moreover, the oxidation of the PS moiety in dinucleotides d[GPSG], d[APSA], d[GPSA], d[APSG] and in S-oligomers was monitored in real-time, showing that PS oxidation can compete with adenine but not with guanine. Significantly, hole transfer process from A+• to PS and concomitant -P–S∴S–P- formation was observed, demonstrating the base-to-backbone hole transfer unique to S-DNA, which is different from the normally adopted backbone-to-base hole transfer in native DNA. These findings reveal the distinct backbone lesion pathway brought by the PS modification and also imply an alternative -P–S∴S–P-/-P–S–S–P- pathway accounting for the interesting protective role of PS as an oxidation sacrifice in bacterial genome.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3064 ◽  
Author(s):  
Yuzhu He ◽  
Byung-gook Kim ◽  
Hye-Eun Kim ◽  
Qiaochu Sun ◽  
Shuhan Shi ◽  
...  

Epidermal inflammation is caused by various bacterial infectious diseases that impair the skin health. Feruloylserotonin (FS) belongs to the hydroxycinnamic acid amides of serotonin, which mainly exists in safflower seeds and has been proven to have anti-inflammatory and antioxidant activities. Human epidermis mainly comprises keratinocytes whose inflammation causes skin problems. This study investigated the protective effects of FS on the keratinocyte with lipopolysaccharides (LPS)-induced human HaCaT cells and elucidated its underlying mechanisms of action. The mechanism was investigated by analyzing cell viability, PGE2 levels, cell apoptosis, nuclear factor erythroid 2-related factor 2 (Nrf2) translocation, and TLR4/NF-κB pathway. The anti-inflammatory effects of FS were assessed by inhibiting the inflammation via down-regulating the TLR4/NF-κB pathway. Additionally, FS promoted Nrf2 translocation to the nucleus, indicating that FS showed anti-oxidative activities. Furthermore, the antioxidative and anti-inflammatory effects of FS were found to benefit each other, but were independent. Thus, FS can be used as a component to manage epidermal inflammation due to its anti-inflammatory and anti-oxidative properties.


2002 ◽  
Vol 11 (8) ◽  
pp. 787-797 ◽  
Author(s):  
Ryo Suzuki ◽  
Yasuo Yoshioka ◽  
Etsuko Kitano ◽  
Tatsunobu Yoshioka ◽  
Hiroaki Oka ◽  
...  

Cell therapy is expected to relieve the shortage of donors needed for organ transplantation. When patients are treated with allogeneic or xenogeneic cells, it is necessary to develop a means by which to isolate administered cells from an immune attack by the host. We have developed “cytomedicine, ” which consists of functional cells entrapped in semipermeable polymer, and previously reported that alginate-poly-l-lysine-alginate microcapsules and agarose microbeads could protect the entrapped cells from injury by cellular immunity. However, their ability to isolate from humoral immunity was insufficient. It is well known that the complement system plays an essential role in rejection of transplanted cells by host humoral immunity. Therefore, the goal of the present study was to develop a novel cytomedical device containing a polymer capable of inactivating complement. In the screening of various polymers, polyvinyl sulfate (PVS) exhibited high anticomplement activity and low cytotoxicity. Murine pancreatic β-cell line (MIN6 cell) entrapped in agarose microbeads containing PVS maintained viability and physiological insulin secretion, replying in response to glucose concentration, and resisted rabbit antisera in vitro. PVS inhibited hemolysis of sensitized sheep erythrocytes (EAs) and rabbit erythrocytes by the complement system. This result suggests that PVS inhibits both the classical and alternative complement pathways of the complement system. Next, the manner in which PVS exerts its effects on complement components was examined. PVS was found to inhibit generation of C4a and Ba generation in activation of the classical and alternative pathways, respectively. Moreover, when the EAC1 cells, which were carrying C1 on the EAs, treated with PVS were exposed to C1-deficient serum, hemolysis decreased in a PVS dose-dependent manner. These results suggest that PVS inhibits C1 in the classical pathway and C3 convertase formation in the alternative pathway. Therefore, PVS may be a useful polymer for developing an anticomplement device for cytomedical therapy.


2000 ◽  
Vol 279 (5) ◽  
pp. L790-L798 ◽  
Author(s):  
Wendy T. Watford ◽  
Andrew J. Ghio ◽  
Jo Rae Wright

Complement is a system of plasma proteins that aids in the elimination of pathogens from the body. We hypothesized that there is a functional complement system present in the lung that aids in the removal of pathogens. Western blot analysis revealed complement proteins of the alternative and classical pathways of complement in bronchoalveolar lavage fluids (BALF) from healthy volunteers. Functional classical pathway activity was detected in human BALF, but there was no significant alternative pathway activity in lavage fluid, a finding that correlates with the low level of the alternative pathway protein, factor B, in these samples. Although the classical pathway of complement was functional in lavage fluid, the level of the classical pathway activator C1q was very low. We tested the ability of the lung- specific surfactant proteins, surfactant protein A (SP-A) and surfactant protein D (SP-D), to substitute for C1q in classical pathway activation, since they have structural homology to C1q. However, neither SP-A nor SP-D restored classical pathway activity to C1q-depleted serum. These data suggest that the classical pathway of complement is functionally active in the lung where it may play a role in the recognition and clearance of bacteria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2429-2429 ◽  
Author(s):  
Monica Konar ◽  
Eduardo Lujan ◽  
Dan Granoff

Abstract Background. Complement pathways are important targets for treatment of paroxysmal nocturnalhemoglobinuria (PNH) and autoimmune diseases. Because complement is essential in host defense against Neisseria, patients treated with complement inhibitors are at increased risk of life-threatening meningococcal disease. Meningococcal vaccination is recommended. However, the ability of vaccine-induced antibodies to confer protection when different complement pathways are blocked is poorly understood. Inhibiting formation of the membrane attack complex, C5b-C9, blocks serum bactericidal activity (SBA). In the absence of SBA, antibodies can prevent meningococcal disease byopsonophagocytosis (OPA) by binding of antibody to bacteria and activation of C4b and C3b via the classical pathway (CP). When antibody is limited, or the antigenic target is sparse, amplification of C3b deposition via the alternative pathway (AP) is required. OPA killing also depends on activation of phagocytic cells and up-regulation of Fc- and CR3 receptors, which is stimulated by C5a. In this study, we used a whole blood meningococcal killing assay to investigate blocking terminal pathway components C5 or C7 on bacterial survival. We also investigated the effect of blocking the AP using a small molecule factor D inhibitor. Methods. Bloodanticoagulated withlepirudin was obtained from five adults previously immunized with a meningococcal polysaccharide or conjugate vaccine. Four subjects also had completed serogroup B vaccination within 10 months. At time 0, ~5000cfu/ml of serogroup B or C bacteria were added to blood. Meningococcal killing was measured after incubation for 1 and 3hrs in the presence or absence of 50 µg/ml of anti-C5 (eculizumab) or a mouse anti-C7 mAb, both of which blocked SBA, or by 1 to 8 µM of a factor D inhibitor (ACH-4471,Achillion) that inhibited Factor D. By ELISA, 1 µM of the factor D inhibitor completely blocked the AP at 1 µM (the lowest concentration tested) and at 8 µM (the highest concentration tested) had no effect on CP. Results. In the absence of inhibitor, blood from all five subjects incubated with bacteria showed no growth after 1 hr (<50 colony forming units (cfu)/mL). For the serogroup C strain, addition of the C5 inhibitor abolished bacterial killing, as evidenced by lack of decrease in cfu/mL at 1 hr relative to time 0, and an increase of >1 log10 cfu/mL at 3 hr (geometric mean, 74,200, Figure, left Panel). With the C7 inhibitor, cfu/mL decreased at 1 hr (p=0.04) and 3 hr (p=0.07) relative to time 0, and at both time points cfu/mL was significantly lower than with the anti-C5 inhibitor (p<0.007). In blood from four subjects tested, addition of the Factor D inhibitor had less effect on inhibiting serogroup C bacterial killing than anti-C5 or anti-C7 as evidence by an average of 1 log10 decreased cfu/mL at 1 hr with the Factor D inhibitor relative to time 0, and <50 cfu/mL at 3 hr. Similar results were obtained with the serogroup B strain by the addition of the C5 or C7 inhibitor to the blood from the three vaccinated subjects tested, and the addition of the Factor D inhibitor did not interfere with bacterial killing (<50 cfu/mL at 1 hr and 3 hr, Figure, right Panel). When tests were done with blood from a serogroup B unvaccinated subject, the Factor D inhibitor blocked killing (42,000 cfu/mL at 3 hr). In experiments with blood from two vaccinated subjects and serogroup B and C strains, the addition of a C5a receptor antagonist to blood containing anti-C7 increased cfu/mL by >1 log10 at 3 hr, compared to anti-C7 alone. Conclusions. Blocking C5 cleavage and release of C5a by a C5 inhibitor impairs both SBA and OPA killing of meningococci in whole blood, which provides a biologic basis for reports of failure of vaccination in preventing meningococcal disease in some patients treated witheculizumab. Blocking C7 impairs SBA but has less effect on impairing whole blood OPA killing than with anti-C5, since release of C5a, which stimulates phagocytic cell activity, is not inhibited by anti-C7. Effective killing of meningococci by blood from vaccinated subjects was seen at 3 hr (< 50cfu/mL) in the presence of ACH-4471. However, ACH-4471 impaired killing of serogroup B strain by blood from an unvaccinated adult, in which bacterial killing depended on the AP. These data suggest that vaccination may be more effective in decreasing the risk of meningococcal disease in the presence of an AP inhibitor as compared to a C5 inhibitor. Figure Figure. Disclosures Granoff: Achillion Pharmaceuticals: Other: Consultant, ended May 1, 2016, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document