scholarly journals Targeting Antibodies to Carbon Nanotube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Steingrimur Stefansson ◽  
Hena H. Kwon ◽  
Saeyoung Nate Ahn

Many carbon nanotube field-effect transistor (CNT-FET) studies have used immobilized antibodies as the ligand binding moiety. However, antibodies are not optimal for CNT-FET detection due to their large size and charge. Their size can prevent ligands from reaching within the Debye length of the CNTs and a layer of charged antibodies on the circuits can drown out any ligand signal. In an attempt to minimize the antibody footprint on CNT-FETs, we examined whether pyrene hydrazide modification of antibody carbohydrates could reduce the concentration required to functionalize CNT circuits. The carbohydrates are almost exclusively on the antibody Fc region and this site-specific modification could mediate uniform antibody orientation on the CNTs. We compared the hydrazide modification of anti-E. coliO157:H7 polyclonal antibodies to pyrenebutanoic acid succinimidyl ester-coated CNTs and carbodiimide-mediated antibody CNT attachment. Our results show that the pyrene hydrazide modification was superior to those methods with respect to bacteria detection and less than 1 nM labeled antibody was required to functionalize the circuits.

2012 ◽  
Vol 1416 ◽  
Author(s):  
Woo Jae Park ◽  
Sung-Jae Chung ◽  
Man S. Kim ◽  
Steingrimur Stefansson ◽  
Saeyoung Ahn

ABSTRACTEnzyme-Linked Immuno-Sorbent Assay (ELISA), and other methods based on the same principle, are sensitive and specific, but they suffer from several disadvantages, such as their inherent complexity and requirement for multiple reagents, incubation and washing steps and require a relatively large sample size. We have adapted a new carbon nanotube field effect transistors (CNT-FET) based platform to capture Escherichia coli antigens using only the capture anti-body showing good correlation with an established ELISA assay contrived positive and negative specimens were used to test the new CNT-FET platform and results were obtained within three minutes per each sample. The test is easy to perform, rapid, and cost efficient making it a valuable screening tool for E. coli. In this study, we looked at the applicability of using CNT field effect transistor based biosensor as a rapid diagnostic platform for Escherichia coli O157:H7. The CNT-FETs platform detected positive E. coli samples in three minutes using only 2.5 μL of sample volume. This low sample volume required by the CNT-FET platform can be especially advantageous for diagnostic tests constricted by limited amount of samples.


2007 ◽  
Vol 121-123 ◽  
pp. 503-506
Author(s):  
D.L. Pulfrey

An assessment is made of the suitability of the carbon nanotube field-effect transistor for applications in nanoelectronics.


Author(s):  
Ali Hosseingholi Pourasl ◽  
Mohammad Taghi Ahmadi ◽  
Meisam Rahmani ◽  
Razali Ismail ◽  
Michael Loong Pengl Tan

In this chapter, novel ideas of graphene and CNT based electrical biosensors are provided. A liquid gated graphene field effect transistor (LG-GFET) based biosensor model is analytically developed for electrical detection of Escherichia coli (E. coli) bacteria. E. coli absorption effects on the graphene surface in the form of conductance variation is considered. Moreover, the current-voltage characteristic in terms of conductance model is applied to evaluate the performance of the biosensor model. Furthermore, the CNT-FET platform is employed for modeling biosensor in order to detect Glucose. For diagnosing and monitoring the blood glucose level, glucose oxidase (GOx) based enzyme sensors have been immensely used. According to the proposed CNT-FET structure, charge based analytical modeling approach is used. The charge-based carrier velocity model is implemented to study electrical characteristics of CNT-FET. In the presented model, the gate voltage is considered as a function of glucose concentration. Finally, the both of presented models are compared with published experimental data.


2009 ◽  
Vol 23 (19) ◽  
pp. 3871-3880 ◽  
Author(s):  
RAHIM FAEZ ◽  
SEYED EBRAHIM HOSSEINI

A carbon nanotube field effect transistor (CNTFET) has been studied based on the Schrödinger–Poisson formalism. To improve the saturation range in the output characteristics, new structures for CNTFETs are proposed. These structures are simulated and compared with the conventional structure. Simulations show that these structures have a wider output saturation range. With this, larger drain-source voltage (Vds) can be used, which results in higher output power. In the digital circuits, higher Vds increases noise immunity.


2016 ◽  
Vol 30 (10) ◽  
pp. 1650125 ◽  
Author(s):  
Saber Barbastegan ◽  
Ali Shahhoseini

This paper presents the simulation study of a junctionless carbon nanotube field effect transistor (JL-CNTFET) and a comparison is made with the conventional CNTFET using the atomistic scale simulation, within the non-equilibrium Green’s function (NEGF) formalism. In order to have a comprehensive analysis, both analog and digital parameters of the device are studied. Results have shown that JL-CNTFET with respect to C-CNTFET shows slightly higher [Formula: see text] ratio about two times larger than that of C-CNTFET, smaller electric field along channel more than three order of magnitude and reduced tunneling current about 100 times. In addition, the investigation of analog properties of both devices has exhibited that junctionless structure has a transconductance about two times and an intrinsic gain of 15 dB larger than C-CNTFET in same bias condition which makes JL-CNTFET a promising candidate for low voltage analog applications.


2019 ◽  
Vol 14 (11) ◽  
pp. 1512-1522 ◽  
Author(s):  
Seyedehsomayeh Hatefinasab

Scaling down the size of transistor in the nanoscale reduces the power supply voltage, as a result, the design of high-performance nano-circuit at low voltage has been considered. Most of digital circuits are composed of different components which determine the performance of the entire digital circuits. With the improvement of these components, the digital circuits can be optimized. One of these components is full adder for which various structures have been proposed to improve its performance, among them the two novel full adder structures are based on Gate-Diffusion Input (GDI) structure and half-classical XOR/XNOR logic (SEMI XOR/XNOR) modules. In this paper, Carbon Nanotube Field Effect Transistor (CNTFET)-based low power full adders by using SEMI XOR logic style and GDI structure are presented. Due to the incomparable thermal and mechanical properties of the CNTFET, it can be the first alternative to substitute the metal oxide field effect transistors (MOSFET). The digital circuits have the better performance based on CNTFET. Therefore, the three proposed full adders in this paper are designed based on CNTFET technology with many merits, such as low power dissipation, less energy delay product (EDP), and high speed at various supply voltages, frequencies, temperatures, load capacitors, and the number of tubes. Moreover, these proposed full adders occupy the minimum area consumption and have better performance in comparison with previous standard full adders. All simulations are done by using the Synopsys HSPICE simulator in 32 nm-CNTFET technology and layout of all full adder circuits are presented on Electric.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 995
Author(s):  
Xuesong Yao ◽  
Yalei Zhang ◽  
Wanlin Jin ◽  
Youfan Hu ◽  
Yue Cui

Chemical and biological sensors have attracted great interest due to their importance in applications of healthcare, food quality monitoring, environmental monitoring, etc. Carbon nanotube (CNT)-based field-effect transistors (FETs) are novel sensing device configurations and are very promising for their potential to drive many technological advancements in this field due to the extraordinary electrical properties of CNTs. This review focuses on the implementation of CNT-based FETs (CNTFETs) in chemical and biological sensors. It begins with the introduction of properties, and surface functionalization of CNTs for sensing. Then, configurations and sensing mechanisms for CNT FETs are introduced. Next, recent progresses of CNTFET-based chemical sensors, and biological sensors are summarized. Finally, we end the review with an overview about the current application status and the remaining challenges for the CNTFET-based chemical and biological sensors.


2001 ◽  
Vol 706 ◽  
Author(s):  
Marcus Freitag ◽  
A. T. Johnson

AbstractWe use scanning gate microscopy to precisely locate the gating response in single-wall nanotube devices. Junctions of metallic and semiconducting nanotubes show a dramatic increase in transport current when they are electrostatically doped with holes at the junction. We ascribe this behavior to the turn-on of a reverse biased Schottky barrier. A similar effect is seen in field-effect transistors made from an individual semiconducting single-wall carbon nanotube. In this case, there are two Schottky barriers at the metal contacts, one of which is forward, and one of which is reverse biased. The gating action is only observed at the reverse biased Schottky barrier at the positive electrode. By positioning the gate near one of the contacts, we convert the nanotube field-effect transistor into a rectifying nanotube diode. These experiments both clarify the gating mechanism for nanotube devices and indicate a strategy for diode fabrication based on controlled placement of acceptor impurities at a nanotube field-effect transistor.


Sign in / Sign up

Export Citation Format

Share Document