scholarly journals Characterization of the Cellular Reaction to a Collagen-Based Matrix: An In Vivo Histological and Histomorphometrical Analysis

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2730 ◽  
Author(s):  
Samuel Ebele Udeabor ◽  
Carlos Herrera-Vizcaíno ◽  
Robert Sader ◽  
C. James Kirkpatrick ◽  
Sarah Al-Maawi ◽  
...  

The permeability and inflammatory tissue reaction to Mucomaix® matrix (MM), a non- cross-linked collagen-based matrix was evaluated in both ex vivo and in vivo settings. Liquid platelet rich fibrin (PRF), a blood concentrate system, was used to assess its capacity to absorb human proteins and interact with blood cells ex vivo. In the in vivo aspect, 12 Wister rats had MM implanted subcutaneously, whereas another 12 rats (control) were sham-operated without biomaterial implantation. On days 3, 15 and 30, explantation was completed (four rats per time-point) to evaluate the tissue reactions to the matrix. Data collected were statistically analyzed using analysis of variance (ANOVA) and Tukey multiple comparisons tests (GraphPad Prism 8). The matrix absorbed the liquid PRF in the ex vivo study. Day 3 post-implantation revealed mild tissue inflammatory reaction with presence of mononuclear cells in the implantation site and on the biomaterial surface (mostly CD68-positive macrophages). The control group at this stage had more mononuclear cells than the test group. From day 15, multinucleated giant cells (MNGCs) were seen in the implantation site and the outer third of the matrix with marked increase on day 30 and spread to the matrix core. The presence of these CD68-positive MNGCs was associated with significant matrix vascularization. The matrix degraded significantly over the study period, but its core was still visible as of day 30 post-implantation. The high permeability and fast degradation properties of MM were highlighted.

2015 ◽  
Vol 41 (6) ◽  
pp. e267-e281 ◽  
Author(s):  
Mike Barbeck ◽  
Jonas Lorenz ◽  
Marzellus Grosse Holthaus ◽  
Nina Raetscho ◽  
Alica Kubesch ◽  
...  

The present study analyzed the tissue reaction to 2 novel porcine-derived collagen materials: pericardium versus dermis. By means of the subcutaneous implantation model in mice, the tissue reactions were investigated at 5 time points: 3, 10, 15, 30, and 60 days after implantation. Histologic, histochemical, immunhistologic, and histomorphometric analysis methodologies were applied. The dermis-derived material underwent an early degradation while inducing mononuclear cells together with some multinucleated giant cells and mild vascularization. The pericardium-derived membrane induced 2 different cellular tissue reactions. The compact surface induced mononuclear cells and multinucleated giant cells, and underwent a complete degradation until day 30. The spongy surface of the membrane induced mainly mononuclear cells, and served as a stable barrier membrane for up to 60 days. No transmembranous vascularization was observed within the spongy material surface layer. The present data demonstrate the diversity of the cellular tissue reaction toward collagen-based materials from different tissues. Furthermore, it became obvious that the presence of multinucleated giant cells was associated with the material breakdown/degradation and vascularization. Further clinical data are necessary to assess extent to which the presence of multinucleated giant cells observed here will influence the materials stability, integration, and, correspondingly, tissue regeneration within human tissue.


2020 ◽  
Vol 319 (1) ◽  
pp. C129-C135 ◽  
Author(s):  
Shawn Owiredu ◽  
Abhay Ranganathan ◽  
David M. Eckmann ◽  
Frances S. Shofer ◽  
Kevin Hardy ◽  
...  

The purpose of this study was to evaluate a new pharmacological strategy using a first-generation succinate prodrug, NV118, in peripheral blood mononuclear cells (PBMCs) obtained from subjects with carbon monoxide (CO) poisoning and healthy controls. We obtained human blood cells from subjects with CO poisoning and healthy control subjects. Intact PBMCs from subjects in the CO and Control group were analyzed with high-resolution respirometry measured in pmol O2 per second per 10−6 PBMCs. In addition to obtaining baseline respiration, NV118 (100 μM) was injected, and the same parameters of respiration were obtained for comparison in PBMCs. We measured mitochondrial dynamics with microscopy with the same conditions. We enrolled 37 patients (17 in the CO group and 20 in the Control group for comparison) in the study. PMBCs obtained from subjects in the CO group had overall significantly lower respiration compared with the Control group ( P < 0.0001). There was a significant increase in respiration with NV118, specifically with an increase in maximum respiration and respiration from complex II and complex IV ( P < 0.0001). The mitochondria in PBMCs demonstrated an overall increase in net movement compared with the Control group. Our results of this study suggest that the therapeutic compound, NV118, increases respiration at complex II and IV as well as restoration of mitochondrial movement in PBMCs obtained from subjects with CO poisoning. Mitochondrial-directed therapy offers a potential future strategy with further exploration in vivo.


1996 ◽  
Vol 38 (5) ◽  
pp. 359-364 ◽  
Author(s):  
Kirte M Teixeira ◽  
Eridan M Coutinho ◽  
Frederico G.C. Abath ◽  
Silvia M.L. Montenegro

The effects of Corynebacterium parvum on host protection, tissue reaction and "in vivo" chemotaxis in Schistosoma mansoni infected mice were studied. The C. parvum was given intraperitoneally using a dose of 0.7 mg, twice a week (for 4 weeks), thirty days before (prophylactic treatment) or after infection (curative treatment). The host protection was evaluated through the recovery of adult worms by liver perfusion and was lower in the prophylactic group as compared to the control group (p = 0.018), resulting in 44% protection. The "in vivo" leukocyte response in both prophylactic and curative groups was higher as compared to the infected/non treated group (p = 0.009 and p = 0.003, respectively). Tissue reactions were described in the experimental and control groups, but there were not remarkable differences among them. The possible biological implications and relevance of the findings for the defensive response of the host and control of schistosomiasis are discussed.


Author(s):  
Hana M. Hammad ◽  
Amer Imraish ◽  
Maysa Al-Hussaini ◽  
Malek Zihlif ◽  
Amani A. Harb ◽  
...  

Objective: Achillea fragrantissima L. (Asteraceae) is a traditionally used medicinal herb in the rural communities of Jordan. Methods: The present study evaluated the efficacy of the ethanol extract of this species on angiogenesis in both, ex vivo using rat aortic ring assay and in vivo using rat excision wound model. Results: In concentrations of 50 and 100 µg/ml, the ethanol extract showed angiogenic stimulatory effect and significantly increased length of capillary protrusions around aorta rings of about 60% in comparison to those of untreated aorta rings. In MCF-7 cells, the ethanol extract of A. fragrantissima stimulates the production of VEGF in a dose-dependent manner. 1% and 5% of ethanol extract of A. fragrantissima containing vaseline based ointment was applied on rat excision wounds for six days and was found to be effective in wound healing and maturation of the scar. Both preparations resulted in better wound healing when compared to the untreated control group and vaseline-treated group. This effect was comparable to that induced by MEBO, the positive control. Conclusion: The results indicate that A. fragrantissima has a pro-angiogenic effect, which may act through the VEGF signaling pathway.


2003 ◽  
Vol 77 (7) ◽  
pp. 4389-4395 ◽  
Author(s):  
Anuska Llano ◽  
Jordi Barretina ◽  
Arantxa Gutiérrez ◽  
Bonaventura Clotet ◽  
José A. Esté

ABSTRACT There is a relationship between CD4-T-cell number and circulating interleukin 7 (IL-7) levels in human immunodeficiency virus (HIV)-positive individuals. Here, we show that IL-7 induced a dose-dependent production of CCL3 (MIP-1α), CCL4 (MIP-1β), and CCL5 (RANTES) in peripheral blood mononuclear cells (PBMC), ex vivo tonsil lymphoid tissue of HIV− individuals, and PBMC from HIV+ individuals, suggesting that IL-7 may regulate β-chemokine production in vivo. In a cross-sectional study of HIV+ individuals (n = 130), a weak but significant correlation between IL-7 and RANTES was noted (r = 0.379; P < 0.001). Remarkably, the correlation between IL-7 and RANTES increased to an r value of 0.798 (P < 0.001) if individuals with low CD4 cell counts (<200 cells/μl) were excluded from the analysis. Our results suggest that there is a relationship between IL-7 and the production of RANTES both in vitro and in vivo that is lost in immune-compromised patients (CD4 count of <200 cells/μl) but that could be restored by antiretroviral therapy. Unlike the case for IL-7, high levels of RANTES suggest an intermediate stage of HIV disease progression.


1998 ◽  
Vol 66 (11) ◽  
pp. 5113-5118 ◽  
Author(s):  
Jenni M. Penttilä ◽  
Marjukka Anttila ◽  
Mirja Puolakkainen ◽  
Aino Laurila ◽  
Kari Varkila ◽  
...  

ABSTRACT Cell-mediated immune (CMI) responses play a major role in protection as well as pathogenesis of many intracellular bacterial infections. In this study, we evaluated the infection kinetics and assessed histologically the lymphoid reactions and local, in vitro-restimulated CMI responses in lungs of BALB/c mice, during both primary infection and reinfection with Chlamydia pneumoniae. The primary challenge resulted in a self-restricted infection with elimination of culturable bacteria by day 27 after challenge. A mild lymphoid reaction characterized the pathology in the lungs. In vitro CMI responses consisted of a weak proliferative response and no secretion of gamma interferon (IFN-γ). The number of lung-derived mononuclear cells increased substantially during the primary infection; the largest relative increase was observed in B cells (B220+). After reinfection, the number of lung-derived mononuclear cells increased further, and the response consisted mainly of T cells. The reinfection was characterized in vivo by significant protection from infection (fewer cultivable bacteria in the lungs for a shorter period of time) but increased local lymphoid reaction at the infection site. In vitro, as opposed to the response in naive mice, acquired immunity was characterized by a strongly Th1-biased (IFN-γ) CMI response. These results suggest that repeated infections with C. pneumoniae may induce Th1-type responses with similar associated tissue reactions, as shown in C. trachomatis infection models.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Yan Zhang ◽  
Marc Lamoureux ◽  
Stephanie Thorn ◽  
Vincent Chan ◽  
Joel Price ◽  
...  

Background: To investigate the mechanisms involved in the potentiation of cell therapy by delivery matrices, we evaluated the retention and engraftment of transplanted human circulating progenitor cells (CPCs) injected in a collagen matrix by using in vivo positron emission tomography (PET) imaging, ex vivo biodistribution, and immunohistochemistry. Methods: CPCs were labeled with 18 F-FDG and injected with or without a collagen type I-based matrix in the ischemic hindlimb muscle (IM) of rats (2x10 6 cells; n=15/group). Localization of cells was acquired by PET imaging (15 min) at 150 min post-injection. In addition, radionuclide biodistribution, immunofluorescence, and immunohistochemical examination of transplanted CPCs were performed at up to 14 days. Results: Cell labeling efficiency was CPC-concentration dependent (r=0.61, p <0.001), but not 18 F-FDG-dose dependent. Labeled CPCs exhibited excellent short-term stability and viability. Persistence of 18 F-FDG radioactivity in cells was markedly greater than non-specific retention in the matrix. Wholebody (WB) PET images revealed better CPC retention in the IM and less non-specific leakage to other tissues when CPCs were delivered within the matrix (IM/WB retention ratio of 43.9±8.2%), compared to cells injected alone (22.3±10.4%; p =0.040) and to 18 F-FDG injected with or without the matrix (9.7±5.5% and 11.0±5.5%, respectively; p <0.005). Radioactivity biodistribution confirmed that accumulation was increased (by 92.5%; p =0.024) in the IM and reduced (by 1.1 to 23.8%; p <0.05) in non-specific tissues when cells were injected within the matrix, compared to cells injected alone. Anti-human mitochondria staining showed increased cell retention in the IM with use of matrices (3.0±2.1%) versus cells only (1.9±0.8%; p =0.048). At 14 days the number of CD31 + transplanted human cells was greater (1.6±0.1%) when injected within the matrix than injected alone (0.7±0.1%; p =0.004). Conclusions: Collagen-based delivery matrices improve the early retention of transplanted CPCs, which in turn favors subsequent cell engraftment in the ischemic tissue. This mechanism conferred by the matrix has potential implications for the optimization of cell therapy at the early stages after cell delivery.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1186
Author(s):  
Lívia da Costa Pereira ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
Adriana Terezinha Neves Novellino Alves ◽  
Rodrigo Figueiredo de Brito Resende ◽  
Marcelo José Pinheiro Guedes de Uzeda ◽  
...  

This study’s aim was to evaluate the biocompatibility and bioabsorption of a new membrane for guided bone regeneration (polylactic-co-glycolic acid associated with hydroxyapatite and β-tricalcium phosphate) with three thicknesses (200, 500, and 700 µm) implanted in mice subcutaneously. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and the quantification of carbon, hydrogen and nitrogen were used to characterize the physico-chemical properties. One hundred Balb-C mice were divided into 5 experimental groups: Group 1—Sham (without implantation); Group 2—200 μm; Group 3—500 μm; Group 4—700 μm; and Group 5—Pratix®. Each group was subdivided into four experimental periods (7, 30, 60 and 90 days). Samples were collected and processed for histological and histomorphometrical evaluation. The membranes showed no moderate or severe tissue reactions during the experimental periods studied. The 500-μm membrane showed no tissue reaction during any experimental period. The 200-μm membrane began to exhibit fragmentation after 30 days, while the 500-μm and 700-µm membranes began fragmentation at 90 days. All membranes studied were biocompatible and the 500 µm membrane showed the best results for absorption and tissue reaction, indicating its potential for clinical guided bone regeneration.


2020 ◽  
Vol 08 (01) ◽  
pp. 17-21
Author(s):  
Udey Singh Wirring ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Aquib Javaid

Abstract Introduction Marginal bone level is the criterion for implant success. Patient expectations for more natural looking implant restorations created the need to restore implants with more esthetically pleasing materials like Zirconia rather than conventional porcelain-fused to-metal (PFM) crowns. The aim of this study was to evaluate marginal bone loss around dental implants clinically and radiographically when restored with Zirconia and PFM prosthesis. Materials and Methods Two groups (control and test) were formed with 14 patients each. In the control group, the subjects were rehabilitated with PFM crowns and in the test group, the subjects were rehabilitated with Zirconia crowns. Rehabilitation was done after the healing period of 3 months. Radiographic evaluation was done at regular (baseline, 3rd, 6th, and 12th month) intervals. Results The results were statistically analyzed. Keeping in mind the limitations of the study, it was revealed that the difference in the crestal bone resorption in both the groups was not significant.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1838 ◽  
Author(s):  
Jessica Bridoux ◽  
Sara Neyt ◽  
Pieterjan Debie ◽  
Benedicte Descamps ◽  
Nick Devoogdt ◽  
...  

Since atherosclerotic plaques are small and sparse, their non-invasive detection via PET imaging requires both highly specific radiotracers as well as imaging systems with high sensitivity and resolution. This study aimed to assess the targeting and biodistribution of a novel fluorine-18 anti-VCAM-1 Nanobody (Nb), and to investigate whether sub-millimetre resolution PET imaging could improve detectability of plaques in mice. The anti-VCAM-1 Nb functionalised with the novel restrained complexing agent (RESCA) chelator was labelled with [18F]AlF with a high radiochemical yield (>75%) and radiochemical purity (>99%). Subsequently, [18F]AlF(RESCA)-cAbVCAM1-5 was injected in ApoE−/− mice, or co-injected with excess of unlabelled Nb (control group). Mice were imaged sequentially using a cross-over design on two different commercially available PET/CT systems and finally sacrificed for ex vivo analysis. Both the PET/CT images and ex vivo data showed specific uptake of [18F]AlF(RESCA)-cAbVCAM1-5 in atherosclerotic lesions. Non-specific bone uptake was also noticeable, most probably due to in vivo defluorination. Image analysis yielded higher target-to-heart and target-to-brain ratios with the β-CUBE (MOLECUBES) PET scanner, demonstrating that preclinical detection of atherosclerotic lesions could be improved using the latest PET technology.


Sign in / Sign up

Export Citation Format

Share Document