scholarly journals Functional Relationships between Lipid Metabolism and Liver Regeneration

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
David A. Rudnick ◽  
Nicholas O. Davidson

The regenerative capacity of the liver is well known, and the mechanisms that regulate this process have been extensively studied using experimental model systems including surgical resection and hepatotoxin exposure. The response to primary mitogens has also been used to investigate the regulation of hepatocellular proliferation. Such analyses have identified many specific cytokines and growth factors, intracellular signaling events, and transcription factors that are regulated during and necessary for normal liver regeneration. Nevertheless, the nature and identities of the most proximal events that initiate hepatic regeneration as well as those distal signals that terminate this process remain unknown. Here, we review the data implicating acute alterations in lipid metabolism as important determinants of experimental liver regeneration and propose a novel metabolic model of regeneration based on these data. We also discuss the association between chronic hepatic steatosis and impaired regeneration in animal models and humans and consider important areas for future research.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1149
Author(s):  
Pieter Borger ◽  
Anton Buzdin ◽  
Maksim Sorokin ◽  
Ekaterina Kachaylo ◽  
Bostjan Humar ◽  
...  

Despite numerous studies addressing normal liver regeneration, we still lack comprehensive understanding of the biological processes underlying failed liver regeneration. Therefore, we analyzed the activity of 271 intracellular signaling pathways (ISPs) by genome wide profiling of differentially expressed RNAs in murine liver tissue biopsies after normal hepatectomy (nHx; 68% of liver removed) and extended hepatectomy (eHx; 86% of liver removed). Comprehensive, genome-wide transcriptome profiling using RNAseq was performed in liver tissue obtained from mice (sham, nHx, and eHx) harvested 1, 8, 16, 32, and 48 h after operation (n = 3 per group) and the OncoFinder toolkit was used for an unsupervised, unbiased identification of intracellular signaling pathways (ISP) activity. We observed that the normal regenerative process requires a transient activation and silencing of approximately two dozen of ISPs. After nHx, the Akt Pathway represented with 13 branches, the Chromatin Pathway and the DDR Pathways dominated. After eHx, the ATM main pathway and two of its branches (Cell Survival; G2_M Checkpoint Arrest) dominated, as well as the Hypoxia Pathways. Further, 14 ISPs demonstrated a strong inverse regulation, with the Hedgehog and the Brca1 Main Pathways as chief activators after nHx, and the ATM Pathway(G2_M Checkpoint Arrest) as the dominating constraining response after eHx.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1346
Author(s):  
Icksoo Lee

Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 373
Author(s):  
Beatriz Villar ◽  
Laia Bertran ◽  
Carmen Aguilar ◽  
Jessica Binetti ◽  
Salomé Martínez ◽  
...  

Recent studies suggest a link between pro-neurotensin (pro-NT) and nonalcoholic fatty liver disease (NAFLD), but the published data are conflicting. Thus, we aimed to analyze pro-NT levels in women with morbid obesity (MO) and NAFLD to investigate if this molecule is involved in NAFLD and liver lipid metabolism. Plasma levels of pro-NT were determined in 56 subjects with MO and 18 with normal weight (NW). All patients with MO were subclassified according to their liver histology into the normal liver (NL, n = 20) and NAFLD (n = 36) groups. The NAFLD group had 17 subjects with simple steatosis (SS) and 19 with nonalcoholic steatohepatitis (NASH). We used a chemiluminescence sandwich immunoassay to quantify pro-NT in plasma and RT-qPCR to evaluate the hepatic mRNA levels of several lipid metabolism-related genes. We reported that pro-NT levels were significantly higher in MO with NAFLD than in MO without NAFLD. Additionally, pro-NT levels were higher in NASH patients than in NL. The hepatic expression of lipid metabolism-related genes was found to be altered in NAFLD, as previously reported. Additionally, although pro-NT levels correlated with LDL, there was no association with the main lipid metabolism-related genes. These findings suggest that pro-NT could be related to NAFLD progression.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Bernat Córdoba-Jover ◽  
Altamira Arce-Cerezo ◽  
Jordi Ribera ◽  
Montse Pauta ◽  
Denise Oró ◽  
...  

Abstract Background and aims Cerium oxide nanoparticles are effective scavengers of reactive oxygen species and have been proposed as a treatment for oxidative stress-related diseases. Consequently, we aimed to investigate the effect of these nanoparticles on hepatic regeneration after liver injury by partial hepatectomy and acetaminophen overdose. Methods All the in vitro experiments were performed in HepG2 cells. For the acetaminophen and partial hepatectomy experimental models, male Wistar rats were divided into three groups: (1) nanoparticles group, which received 0.1 mg/kg cerium nanoparticles i.v. twice a week for 2 weeks before 1 g/kg acetaminophen treatment, (2) N-acetyl-cysteine group, which received 300 mg/kg of N-acetyl-cysteine i.p. 1 h after APAP treatment and (3) partial hepatectomy group, which received the same nanoparticles treatment before partial hepatectomy. Each group was matched with vehicle-controlled rats. Results In the partial hepatectomy model, rats treated with cerium oxide nanoparticles showed a significant increase in liver regeneration, compared with control rats. In the acetaminophen experimental model, nanoparticles and N-acetyl-cysteine treatments decreased early liver damage in hepatic tissue. However, only the effect of cerium oxide nanoparticles was associated with a significant increment in hepatocellular proliferation. This treatment also reduced stress markers and increased cell cycle progression in hepatocytes and the activation of the transcription factor NF-κB in vitro and in vivo. Conclusions Our results demonstrate that the nanomaterial cerium oxide, besides their known antioxidant capacities, can enhance hepatocellular proliferation in experimental models of liver regeneration and drug-induced hepatotoxicity.


Hepatology ◽  
2003 ◽  
Vol 38 ◽  
pp. 598-598
Author(s):  
O GOLDSHMIDT ◽  
R YEIKILIS ◽  
M PAIZI ◽  
I VLODAVSKY ◽  
G SPIRA

2008 ◽  
Vol 2 (1) ◽  
pp. 71 ◽  
Author(s):  
Intawat Nookaew ◽  
Michael C Jewett ◽  
Asawin Meechai ◽  
Chinae Thammarongtham ◽  
Kobkul Laoteng ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
N. Pilat ◽  
L. Unger ◽  
G. A. Berlakovich

The liver has the outstanding ability to regenerate itself and restore parenchymal tissue after injury. The most common cell source in liver growth/regeneration is replication of preexisting hepatocytes although liver progenitor cells have been postulated to participate in liver regeneration in cases of massive injury. Bone marrow derived hematopoietic stem cells (BM-HSC) have the formal capacity to act as a source for hepatic regeneration under special circumstances; however, the impact of this process in liver tissue maintenance and regeneration remains controversial. Whether BM-HSC are involved in liver regeneration or not would be of particular interest as the cells have been suggested to be an alternative donor source for the treatment of liver failure. Data from murine models of liver disease show that BM-HSC can repopulate liver tissue and restore liver function; however, data obtained from human liver transplantation show only little evidence for liver regeneration by this mechanism. The cell source for liver regeneration seems to depend on the nature of regeneration process and the extent of injury; however, the precise mechanisms still need to be resolved. Current data suggest, that in human orthotopic liver transplantation, liver regeneration by BM-HSC is a rather rare event and therefore not of clinical relevance.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Patrizia Camelliti ◽  
Gil Bub ◽  
Daniel J Stuckey ◽  
Christian Bollensdorff ◽  
Damian J Tyler ◽  
...  

Sarcomere length (SL) is a fundamental parameter underlying the Frank Starling relation in the heart, as it offers an absolute representation of myocardial stretch. Previous studies addressed the Frank Starling relation by measuring SL in isolated myocytes or muscle strips. Here, we report first data obtained using a novel technique to measure sub-epicardial SL in perfused hearts. Rat hearts were Langendorff perfused (normal Tyrode solution) at a constant pressure of 90mmHg, labeled with the fluorescent membrane marker di-4-ANEPPS, and then arrested with high-K + Tyrode for either 2-photon microscopy (n=4) or MRI (n=4). Image analysis software was developed to extract SL at the cell level from >1,400 2-photon images (Fig 1 ) and correct for cell angle. SL increased by 10±2 % between 30 and 80 min of perfusion (1.98±0.04 to 2.17±0.03 μm; p<0.05; Fig 1 ). Measurements of left ventricular myocardial volume (LVMV) were made in vivo and in perfused hearts using 3D MRI. LVMV increased by 24±7% from in vivo to 30 min of perfusion, and by 11±3 % between 30 and 90 min (539±35; 664±44; 737±49 mm 3 , respectively; p<0.05; Fig 1 ). We show that SL can be measured in isolated perfused hearts. The method allowed monitoring of changes in SL over time, and showed that SL and LVMV increase to a similar extent during 30–80 min perfusion with crystalloid solution, probably due to tissue oedema. This result, together with the increase in LVMV during the first 30 min, highlights the pronounced differences between in vivo , in situ , and in vitro model systems for studies of cardiac physiology and mechanics. Future research will compare changes in SL in healthy hearts and disease models involving contractile dysfunction. Figure 1: Left: 2-photon microscopy image of di-4-ANEPPS labeled myocardium. Right: SL and LVMV changes over time.


2020 ◽  
Author(s):  
Tamara Madácsy ◽  
Árpad Varga ◽  
Noémi Papp ◽  
Barnabás Deák ◽  
Bálint Tél ◽  
...  

ABSTRACTExocrine pancreatic damage is a common complication of cystic fibrosis (CF), which can significantly debilitate the quality of life and life expectancy of CF patients. The cystic fibrosis transmembrane conductance regulator (CFTR) has a major role in pancreatic ductal ion secretion, however, it presumably has an influence on intracellular signaling as well. Here we describe in multiple model systems, including iPSC-derived human pancreatic organoids from CF patients, that the activity of PMCA4 is impaired by the decreased expression of CFTR in ductal cells. The regulation of PMCA4, which colocalizes and physically interacts with CFTR on the apical membrane of the ductal cells, is dependent on the calmodulin binding ability of CFTR. Moreover, CFTR seems to be involved in the process of the apical recruitment of calmodulin, which enhances its role in calcium signaling and homeostasis. Sustained intracellular Ca2+ elevation in CFTR KO cells undermined the mitochondrial function and increased apoptosis. Based on these, the prevention of sustained intracellular Ca2+ overload may improve the exocrine pancreatic function and may have a potential therapeutic aspect in CF.


Sign in / Sign up

Export Citation Format

Share Document