scholarly journals Synthesis, Thermal Properties and Nucleating Effect ofN, N, N, N'-Tetra(benzoyl) Ethylene Diamine Tetraacetic Acid Dihydrazide as Nucleating Agent of Poly(L-lactic acid)

2012 ◽  
Vol 9 (3) ◽  
pp. 1575-1580 ◽  
Author(s):  
Yan-Hua Cai

N, N, N, N'-Tetra(benzoyl) ethylene diamine tetraacetic acid dihydrazide as nucleating agent of Poly(L-lactic acid) (PLLA) was synthesized from benzoyl hydrazine and tetraacetic acid by acylation and ammoniation. and the structure of this novel tetraamide compound had been characterized by FT-IR. The thermal stability ofN, N, N, N'-Tetra(benzoyl) ethylene diamine tetraacetic acid dihydrazide was investigated by TGA thermal analyzer. The result showed good thermal stability ofN, N, N, N'-Tetra(benzoyl) ethylene diamine tetraacetic acid dihydrazide under 170 °C.N, N, N, N'-Tetra(benzoyl) ethylene diamine tetraacetic acid dihydrazide modified PLLA sample was prepared by a melt-mixing technique. With incorporation of 0.5%N, N, N, N'-Tetra(benzoyl) ethylene diamine tetraacetic acid dihydrazide, Non-isothermal crystallization behavior at different cooling rate showed the crystallization peak of PLLA became sharper and shift to higher temperature, and indicated that the presence ofN, N, N, N'-Tetra(benzoyl) ethylene diamine tetraacetic acid dihydrazide accelerated the overall PLLA crystallization.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yan-Hua Cai ◽  
Yan-Hua Zhang

N,N,N′-Tris(benzoyl) trimesic acid hydrazide (TTAD), as a novel nucleating agent of poly(L-lactic acid) (PLLA), was synthesized and characterized by FT-IR and1H NMR. The crystallization, melting behavior, and thermal stability of PLLA induced by TTAD were investigated through DSC, TGA, depolarized-light intensity measurement, and so forth. The crystallization behavior indicated that the presence of TTAD accelerated the overall PLLA crystallization. Compared to neat PLLA, the crystallization onset temperature of PLLA/1%TTAD increased from 101.36°C to 125.26°C, the melt-crystallization peak temperature increased from 94.49°C to 117.56°C, crystallization enthalpy increased from 0.1023 J·g−1to 33.44 J·g−1at a cooling rate of 1°C/min from melt, and the crystallization half-time of PLLA/TTAD decreased from 2997.2 s to 108.9 s at 110°C. Moreover, the nonisothermal crystallization measurements also indicated that the crystallization peak became wider and shifted to a lower temperature with increasing cooling rate. With the presence of TTAD, the melting behavior of PLLA was affected significantly, and a double-melting peak occurred due to melting-recrystallization. Thermal stability research showed that there existed one degradation stage of PLLA and PLLA/TTAD samples, and the thermal degradation temperature of PLLA/TTAD decreased compared to neat PLLA.


2020 ◽  
Vol 42 (3) ◽  
pp. 383-383
Author(s):  
Li Sha Zhao and Yan Hua Cai Li Sha Zhao and Yan Hua Cai

In this study, a 1H-benzotriazole derivative, N, Nand#39;-bis(1H-benzotriazole) succinic acid acethydrazide (SABHA), was synthesized to nucleate Poly(L-lactic acid) (PLLA). A series of comparative studies on the melt-crystallization, the cold-crystallization, the melting behavior, the thermal stability, as well as the fluidity between the pure PLLA and PLLA/SABHA were performed. The melt-crystallization behavior revealed that the SABHA as a heterogeneous nucleating agent could significantly facilitate the crystallization of PLLA, and a larger amount of SABHA concentration exhibited the better nucleation effect. However, for the cold-crystallization process, the crystallization peak shifted toward the lower temperature with increasing of SABHA concentration. The melting behavior after crystallization at different crystallization temperatures showed that the melting process of PLLA/SABHA samples depended on the crystallization temperature, and the appearance of the double melting peaks was attributed to the melt-recrystallization. The thermal decomposition profile of PLLA was not affected by SABHA, but the addition of SABHA reduced the thermal stability of PLLA. Fortunately, the presence of SABHA improved the fluidity of PLLA, and the effect of SABHA concentration on the fluidity was positive.


2022 ◽  
Vol 58 (4) ◽  
pp. 73-83
Author(s):  
Hao Huang ◽  
Shuang-Qing Liu ◽  
Cheng-Pei Li ◽  
Shi-Tianle Luo ◽  
Li-Sha Zhao ◽  
...  

In this study, a new organic nucleating agent N, N -bis(stearic acid)-1,4-dicarboxybenzene dihydrazide (PASH) to improve crystallization behavior of poly(L-lactic acid) (PLLA) along with the effect of PASH on melting behavior, thermal stability of PASH-nucleated PLLA was holistically reported. The melt-crystallization process illustrated that PASH as an effective heterogeneous nucleating agent could boost PLLA�s crystallization rate, but increasing PASH concentration and cooling rate conversely inhibited melt-crystallization process of PLLA in this study. With respect to melt-crystallization process, a larger amount of PASH leaded to a shift of cold-crystallization peak to lower temperature level. Isothermal crystallization revealed, in comparison to pure PLLA, that the half time of overall crystallization of PLLA/PASH was significantly decreased with PLLA containing 3 wt% PASH having the minimum t1/2= 67.3 s at 105şC. The different melting behaviors of PLLA/PASH under different conditions were attributed to the nucleating effect of PASH within PLLA. In particular, the melting behavior at a heating rate of 10�C/min after isothermal crystallization depended primarily on the crystallization temperature. Whereas, the impact of crystallization time on melting behavior was negligible. Nonetheless, the melting behavior was influenced by the heating rate after non-isothermal crystallization. The thermal stability of PLLA was detrimental with the addition of PASH owing to a typical drop in onset thermal decomposition temperature.


2019 ◽  
Vol 953 ◽  
pp. 47-52
Author(s):  
Sirirat Wacharawichanant ◽  
Attachai Sriwattana ◽  
Kulaya Yaisoon ◽  
Manop Phankokkruad

The effects of the montmorillonite clay surface modified with 0.5-5 wt% aminopropyltriethoxysilane and 15-35% octadecylamine (Clay-APTSO) on morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/ethylene-octene copolymer (EOC)/Clay-APTSO composites were investigated. The blends of PLA/EOC with and without Clay-APTSO were prepared by melt mixing in an internal mixer. Scanning electron microscopy analysis observed the morphology of PLA/EOC blends demonstrated a phase separation of minor phase and matrix phase. The addition of Clay-APTSO in PLA/EOC blends showed significant decreased in droplet size of dispersed EOC phase, thus, Clay-APTSO acted as an effective compatibilizer in the PLA/EOC blends. The results of tensile properties found the decrease of Young’s modulus of PLA when added EOC due to the low modulus and flexibility of EOC. While the incorporation of Clay-APTSO increased significantly Young’s modulus of PLA/EOC blends at low EOC and Clay-APTSO content. The strain at break of the blends increased with the increase of EOC loading, this indicated the presence of EOC enhanced the elongation at break of PLA, while the addition Clay-APTSO reduced the strain at break of PLA/EOC blends. The tensile strength of all blend compositions improved when added Clay-APTSO and the tensile strength showed the highest value at 3 phr of Clay-APTSO. The thermal stability of PLA/EOC blends did not change when compared with neat PLA, and when added Clay-APTSO in the blends could improve the thermal stability of the PLA/EOC blends.


Author(s):  
Ni Luo ◽  
Jing Xu ◽  
Xiyue Cheng ◽  
ZhenHua Li ◽  
Yidong Huang ◽  
...  

The good thermal stability of a phosphor is crucial for its practical applications. Unfortunately, in the past decades, only Gurney-Mott equation was available to describe the relation between the luminescence...


Sign in / Sign up

Export Citation Format

Share Document