scholarly journals A Self-Powered Medical Device for Blood Irradiation Therapy

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Avigail D. Amsel ◽  
Arkady Rudnitsky ◽  
Zeev Zalevsky

Implantable wireless devices may allow localized real-time biomedical treating and monitoring. However, such devices require a power source, which ideally, should be self-powered and not battery dependent. In this paper, we present a novel self-powered light therapeutic device which is designed to implement blood irradiation therapy. This device is self-powered by a miniaturized turbine-based generator which uses hydraulic flow energy as its power source. The research presented in this paper may become the first step towards a new type of biomedical self-operational micromechanical devices deployed for biomedical applications.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1230
Author(s):  
Vega Lloveras ◽  
José Vidal-Gancedo

The search for new biomedical applications of dendrimers has promoted the synthesis of new radical-based molecules. Specifically, obtaining radical dendrimers has opened the door to their use in various fields such as magnetic resonance imaging, as anti-tumor or antioxidant agents, or the possibility of developing new types of devices based on the paramagnetic properties of organic radicals. Herein, we present a mini review of radical dendrimers based on polyphosphorhydrazone, a new type of macromolecule with which, thanks to their versatility, new metal-free contrast agents are being obtained, among other possible applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiang Ouyang ◽  
Ling Zhang ◽  
Leijiao Li ◽  
Wei Chen ◽  
Zhongmin Tang ◽  
...  

Abstract Stanene (Sn)-based materials have been extensively applied in industrial production and daily life, but their potential biomedical application remains largely unexplored, which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials. Herein, we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional (2D) Sn nanosheets (SnNSs). The obtained SnNSs exhibited a typical sheet-like structure with an average size of ~ 100 nm and a thickness of ~ 5.1 nm. After PEGylation, the resulting PEGylated SnNSs (SnNSs@PEG) exhibited good stability, superior biocompatibility, and excellent photothermal performance, which could serve as robust photothermal agents for multi-modal imaging (fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer. Furthermore, we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs, revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal. This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics. This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.


2016 ◽  
Vol 12 (02) ◽  
pp. 20
Author(s):  
Haifeng Lin ◽  
Ruili Mao

The accumulator can store the energy in high capacity, and the super capacitor can charge and discharge in high power. The mixed power source composed by the accumulator and super capacitor not only has the characteristics for both of them but also meets the high-power requirement of high capacity and peak value. How to perform the equalizing charging for multiple power packs is a emphasis in the industry currently. On the basis of analysis for multiple equalizing charging methods, a new type of design scheme based on DC/DC and switch matrix is raised in this project, the thinking of intermittent charging mode is adopted and four BCAP0350 is served as the charging sample to perform the charging and discharging experiment as well as verify the composite charging design scheme is provided with the feasibility.


Author(s):  
Sugato Hajra ◽  
Manisha Sahu ◽  
Aneeta Manjari Padhan ◽  
Jaykishon Swain ◽  
Basanta Kumar Panigrahi ◽  
...  

Harvesting mechanical energy from surroundings can be a promising power source for micro/nano-devices. The triboelectric nanogenerator (TENG) works in the principle of triboelectrification and electrostatic induction. So far, the metals...


Author(s):  
Guili Ge ◽  
Lin Li ◽  
Dan Wang ◽  
Mingjian Chen ◽  
Zhaoyang Zeng ◽  
...  

Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, easy surface functionalization, making them widely used in biological...


2020 ◽  
Vol 13 (5) ◽  
pp. 1462-1472 ◽  
Author(s):  
Hyeon Lee ◽  
Rammohan Sriramdas ◽  
Prashant Kumar ◽  
Mohan Sanghadasa ◽  
Min Gyu Kang ◽  
...  

A magnetoelectric coupled magneto-mechano-electric energy conversion mechanism allows the generation of high electrical power from ambient stray magnetic fields around infrastructures.


Sign in / Sign up

Export Citation Format

Share Document