scholarly journals Stability and Stabilizing of Fractional Complex Lorenz Systems

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Rabha W. Ibrahim

We study the stability and stabilization of complex fractional Lorenz system. The fractional calculus are taken in sense of the Caputo derivatives. The technique is based on stability theory of fractional-order systems. Numerical solutions are imposed.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Margarita Rivero ◽  
Sergei V. Rogosin ◽  
José A. Tenreiro Machado ◽  
Juan J. Trujillo

The theory and applications of fractional calculus (FC) had a considerable progress during the last years. Dynamical systems and control are one of the most active areas, and several authors focused on the stability of fractional order systems. Nevertheless, due to the multitude of efforts in a short period of time, contributions are scattered along the literature, and it becomes difficult for researchers to have a complete and systematic picture of the present day knowledge. This paper is an attempt to overcome this situation by reviewing the state of the art and putting this topic in a systematic form. While the problem is formulated with rigour, from the mathematical point of view, the exposition intends to be easy to read by the applied researchers. Different types of systems are considered, namely, linear/nonlinear, positive, with delay, distributed, and continuous/discrete. Several possible routes of future progress that emerge are also tackled.


2014 ◽  
Vol 687-691 ◽  
pp. 447-450 ◽  
Author(s):  
Hong Gang Dang ◽  
Wan Sheng He ◽  
Xiao Ya Yang

In this paper, synchronization of a fractional-order delayed system is studied. Based on the stability theory of fractional-order systems, by designing appropriate controllers, the synchronization for the proposed system is achieved. Numerical simulations show the effectiveness of the proposed scheme.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yi Chai ◽  
Liping Chen ◽  
Ranchao Wu

This paper mainly investigates a novel inverse projective synchronization between two different fractional-order hyperchaotic systems, that is, the fractional-order hyperchaotic Lorenz system and the fractional-order hyperchaotic Chen system. By using the stability theory of fractional-order differential equations and Lyapunov equations for fractional-order systems, two kinds of suitable controllers for achieving inverse projective synchronization are designed, in which the generalized synchronization, antisynchronization, and projective synchronization of fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system are also successfully achieved, respectively. Finally, simulations are presented to demonstrate the validity and feasibility of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Cuimei Jiang ◽  
Shutang Liu ◽  
Chao Luo

We propose a new fractional-order chaotic complex system and study its dynamical properties including symmetry, equilibria and their stability, and chaotic attractors. Chaotic behavior is verified with phase portraits, bifurcation diagrams, the histories, and the largest Lyapunov exponents. And we find that chaos exists in this system with orders less than 5 by numerical simulation. Additionally, antisynchronization of different fractional-order chaotic complex systems is considered based on the stability theory of fractional-order systems. This new system and the fractional-order complex Lorenz system can achieve antisynchronization. Corresponding numerical simulations show the effectiveness and feasibility of the scheme.


2013 ◽  
Vol 397-400 ◽  
pp. 1278-1281
Author(s):  
Wei Wei Zhang ◽  
Ding Yuan Chen

In the current paper, a new fractional order hyperchaotic system is discussed. Using the activation feedback control, the synchronization of a new fractional order hyperchaotic system is implemented based on the stability theory of fractional order systems. Numerical simulations are demonstrated the effectiveness.


2011 ◽  
Vol 25 (09) ◽  
pp. 1283-1292 ◽  
Author(s):  
MING-JUN WANG ◽  
XING-YUAN WANG

In the paper, generalized chaotic synchronization of a class of fractional order systems is studied. Based on the stability theory of linear fractional order systems, a generalized synchronization scheme is presented, and theoretical analysis is provided to verify its feasibility. The proposed method can realize generalized synchronization not only of fractional order systems with same dimension, but also of systems with different dimensions. Besides, the function relation of generalized synchronization can be linear or nonlinear. Numerical simulations show the effectiveness of the scheme.


Author(s):  
XueFeng Zhang ◽  
YangQuan Chen

This paper considers the stability and stabilization of fractional order systems (FOS) with the fractional order α: 0 < α < 1 case. The equivalence between stability of fractional order systems and D–stability of a matrix A in specific region is proven. The criteria of stability and stabilization of fractional order system are presented. The conditions are expressed in terms of linear matrix inequalities (LMIs) which can be easily calculated with standard feasible solution problem in MATLAB LMI toolbox. When α = 1, the results reduce to the conditions of stability and stabilization of integer order systems. Numerical examples are given to verify the effectiveness of the criteria. With the approach proposed in this paper, we can analyze and design fractional order systems in the same way as what we do to the integer order system state-space models.


2013 ◽  
Vol 850-851 ◽  
pp. 876-879
Author(s):  
Hong Gang Dang

In this paper, dynamics and synchronization of the fractional-order Sprott E system are investigated. Firstly, the chaotic attractor of the system is got by means of numerical simulation. Then based on the stability theory of fractional-order systems, the synchronization of the system is realized. Numerical simulations are carried out to demonstrate the effectiveness of the controllers.


2009 ◽  
Vol 23 (13) ◽  
pp. 1695-1714 ◽  
Author(s):  
XING-YUAN WANG ◽  
JING ZHANG

In this paper, based on the modified state observer method, synchronization and generalized synchronization of a class of fractional order chaotic systems are presented. The two synchronization approaches are theoretically and numerically studied and two simple criterions are proposed. By using the stability theory of linear fractional order systems, suitable conditions for achieving synchronization and generalized synchronization are given. Numerical simulations coincide with the theoretical analysis.


2019 ◽  
Vol 9 (20) ◽  
pp. 4348 ◽  
Author(s):  
Bo Li ◽  
Yun Wang ◽  
Xiaobing Zhou

Multi-switching combination synchronization of three fractional-order delayed systems is investigated. This is a generalization of previous multi-switching combination synchronization of fractional-order systems by introducing time-delays. Based on the stability theory of linear fractional-order systems with multiple time-delays, we propose appropriate controllers to obtain multi-switching combination synchronization of three non-identical fractional-order delayed systems. In addition, the results of our numerical simulations show that they are in accordance with the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document