scholarly journals Inhibitory Effects of Baicalin on the Expression and Activity of CYP3A Induce the Pharmacokinetic Changes of Midazolam in Rats

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xin Tian ◽  
Zhen-Yu Cheng ◽  
Han Jin ◽  
Jie Gao ◽  
Hai-Ling Qiao

Baicalin, a flavonoid compound isolated fromScutellaria baicalensis, has been shown to possess antiinflammatory, antiviral, antitumour, and immune regulatory properties. The present study evaluated the potential herb-drug interaction between baicalin and midazolam in rats. Coadministration of a single dose of baicalin (0.225, 0.45, and 0.90 g/kg, i.v.) with midazolam (10 mg/kg, i.v.) in rats resulted in a dose-dependent decrease in clearance (CL) from 25%  (P<0.05)to 34%  (P<0.001)with an increase inAUC0−∞from 47%  (P<0.05)to 53%  (P<0.01). Pretreatment of baicalin (0.90 g/kg, i.v., once daily for 7 days) also reduced midazolam CL by 43%  (P<0.001), with an increase inAUC0−∞by 87%  (P<0.01). Multiple doses of baicalin decreased the expression of hepatic CYP3A2 by approximately 58%  (P<0.01)and reduced midazolam 1′-hydroxylation by 23%  (P<0.001)and 4′-hydroxylation by 21%  (P<0.01)in the liver. In addition, baicalin competitively inhibited midazolam metabolism in rat liver microsomes in a concentration-dependent manner. Our data demonstrated that baicalin induced changes in the pharmacokinetics of midazolam in rats, which might be due to its inhibition of the hydroxylation activity and expression of CYP3A in the liver.

1992 ◽  
Vol 263 (6) ◽  
pp. L657-L663
Author(s):  
X. Chen ◽  
M. Tzanela ◽  
M. K. Baumgartner ◽  
J. R. McCormick ◽  
J. D. Catravas

We have studied the effects of phorbol 12-myristate 13-acetate (PMA)-activated neutrophils [polymorphonuclear leukocytes (PMN)] on endothelial ectoenzyme [angiotensin-converting enzyme (ACE) and 5'-nucleotidase (NCT)] activities in cultured rabbit aortic endothelial cells (EC) with the use of [3H]benzoyl-Phe-Ala-Pro and 14C-labeled AMP as substrates, respectively, under first-order reaction conditions. PMA (1–1,000 ng/ml) or PMN alone had no effect on ACE activity. When PMA was incubated together with PMN (PMN/EC = 1.25:1 or 2.5 x 10(5) neutrophils/ml) for 4 h in Earle's salts, a PMA dose-dependent decrease in ACE activity was observed. Threshold PMA concentration was 2 ng/ml. At 8 ng PMA/ml, ACE activity was totally abolished, without any evidence of cytotoxicity, as inferred from release of 51Cr from prelabeled EC. The decrease in ACE activity was also dependent on PMN concentration and was detectable at PMN/EC values as low as 1.25:10 (0.25 x 10(5) PMN/ml). Inhibition of ACE occurred as early as 1 h after incubation (PMA 10 ng/ml, PMN/EC = 1.25:1). PMA alone caused a small but significant increase in NCT activity, whereas PMA coincubation with PMN produced a significant decrease in NCT activity (20–29%), which was PMA and PMN concentration independent. PMA increased PMN adherence to endothelial monolayers in a concentration-dependent manner. Pretreating PMN with monoclonal antibody 60.3 (raised against the adhesion glycoprotein CD18) or placing a 2-microns filter between PMN and EC, protected the decrease in ACE activity.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 285 (2) ◽  
pp. R380-R393 ◽  
Author(s):  
Dan Li ◽  
Jin Fu Wen ◽  
Jing Yu Jin ◽  
Hua Jin ◽  
Hai Sun Ann ◽  
...  

Changes in cyclic nucleotide production and atrial dynamics have been known to modulate atrial natriuretic peptide (ANP) release. Although cardiac atrium expresses histamine receptors and contains histamine, the role of histamine in the regulation of ANP release has to be defined. The purpose of the present study was to define the effect of histamine on the regulation of ANP release in perfused beating rabbit atria. Histamine decreased ANP release concomitantly with increases in cAMP efflux and atrial dynamics in a concentration-dependent manner. Histamine-induced decrease in ANP release was a function of an increase in cAMP production. Blockade of histamine H2 receptor with cimetidine but not of H1 receptor with triprolidine abolished the responses of histamine. Cell-permeable cAMP analog, 8-Br-cAMP, mimicked the effects of histamine, and the responses were dose-dependent and blocked by a protein kinase A (PKA)-selective inhibitor, KT5720. Nifedipine failed to modulate histamine-induced decrease in ANP release. Protein kinase nonselective inhibitor staurosporine blocked histamine-induced changes in a concentration-dependent manner. KT5720 and RP-adenosine 3′,5′-cyclic monophosphorothioate, another PKA-selective inhibitor, attenuated histamine-induced changes. These results suggest that histamine decreases atrial ANP release by H2 receptor-cAMP signaling via PKA-dependent and -independent pathways.


2002 ◽  
Vol 21 (8) ◽  
pp. 453-456 ◽  
Author(s):  
A Nagashima ◽  
E Tanaka ◽  
S Inomata ◽  
S Misawa

In this study, we have investigated the relationship between lidocaine metabolism and premedication, i.e., psychotropic and anti-anxiety agents (diazepam, midazolam), hypnotics (pentobarbital, thiamylal), depolarizing muscular relaxants (vecuronium, pancuronium and suxamethonium), an active anti-hypertensive (clonidine) and an H2 receptor antagonist (cimetidine) using rat hepatic microsomes in vitro. Lidocaine metabolism was noncompetitively inhibited by midazolam (Ki=29.0 mM). Thilamylal was a moderate competitive inhibitor of lidocaine metabolism (Ki=77.8 mM). Pentobarbital, diazepam and cimetidine weakly inhibited lidocaine metabolism formation in a concentration-dependent manner at high substrate concentrations. On the other hand, vecuronium, pancuronium, suxamethonium and clonidine did not inhibit lidocaine metabolism over the therapeutic range. These results show that the interaction between lidocaine and midazolam and thiamylal, catalyzed by a similar cytochrome P450, is of potential importance in toxicological and clinical studies.


Planta Medica ◽  
2017 ◽  
Vol 83 (11) ◽  
pp. 895-900 ◽  
Author(s):  
Jun Yu ◽  
Min Choi ◽  
Jong Park ◽  
Shaheed Rehman ◽  
Katsunori Nakamura ◽  
...  

AbstractThis study assessed the inhibitory effects of Garcinia cambogia extract on the cytochrome P450 enzymes in vitro. G. cambogia extract was incubated with cytochrome P450 isozyme-specific substrates in human liver microsomes and recombinant CYP2B6 isozyme, and the formation of the marker metabolites was measured to investigate the inhibitory potential on cytochrome P450 enzyme activities. The results showed that G. cambogia extract has significant inhibitory effects on CYP2B6 activity in a concentration-dependent manner. Furthermore, the inhibition was potentiated following preincubation with NADPH, indicating that G. cambogia extract is a time-dependent inhibitor of CYP2B6. Meanwhile, hydroxycitric acid, the major bioactive ingredient of G. cambogia extract, did not exhibit significant inhibition effects on cytochrome P450 enzyme activities. G. cambogia extract could modulate the pharmacokinetics of CYP2B6 substrate drugs and lead to interactions with those drugs. Therefore, caution may be required with respect to concomitant intake of dietary supplements containing G. cambogia extract with CYP2B6 substrates.


2019 ◽  
Vol 69 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Xue Wang ◽  
Shuaishuai Huang ◽  
Xia Xin ◽  
Yu Ren ◽  
Guobin Weng ◽  
...  

Abstract Umbelliferone exhibits extensive pharmacological activity, including anti-immunomodulatory, anti-inflammatory and antigenotoxicity activities. However, its antitumor properties still remain unclear in human renal cell carcinoma (RCC) cells. Our results have revealed that treatment of human RCC cells (786-O, OS-RC-2, and ACHN) with umbelliferone reduced cell proliferation in a concentration-dependent manner and induced dose-dependent apoptotic events. In addition, cell cycle analysis determined that umbelliferone treatment induced cell cycle arrest in the G1 phase in a dose-dependent manner. Furthermore, western blotting analysis showed a dose-dependent decrease in Ki67, MCM2, Bcl-2, CDK2, CyclinE1, CDK4, and CyclinD1 and a dose-dependent increase in Bax in RCC cells cultured with umbelliferone. Similarly, umbelliferone exhibited a dose-dependent reduction of p110γ when using western blotting analyses. Taken together, these results provide an insight into the pharmacology regarding the potential application of umbelliferone, which contributes to cell death by decreasing p110γ protein expression.


2021 ◽  
Vol 14 (8) ◽  
pp. 719
Author(s):  
Jiawang Liu ◽  
Nirmal Rajasekaran ◽  
Ahamed Hossain ◽  
Changde Zhang ◽  
Shanchun Guo ◽  
...  

Fulvestrant-3-boronic acid (ZB716), an oral selective estrogen receptor degrader (SERD) under clinical development, has been investigated in ADME studies to characterize its absorption, metabolism, and pharmacokinetics. ZB716 was found to have high plasma protein binding in human and animal plasma, and low intestinal mucosal permeability. ZB716 had high clearance in hepatocytes of all species tested. ZB716 was metabolized primarily by CYP2D6 and CYP3A. In human liver microsomes, ZB716 demonstrated relatively low inhibition of CYP1A2, 2C8, 2C9, 2C19, 2D6, and 3A4 (when testosterone was used as the substrate), and no inhibition of CYP2B6 and 3A4 (when midazolam was used as the substrate). In assays for enzyme activity, ZB716 induced CYP1A2, 2B6, and 3A4 in a concentration-dependent manner. Single-dose and repeated-dose pharmacokinetic studies in rats and dogs showed oral bioavailability, dose-proportional drug exposure, and drug accumulation as measured by maximum concentration and area under the concentration–time curve (AUC).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


2010 ◽  
Vol 65 (9-10) ◽  
pp. 537-542 ◽  
Author(s):  
Canan Kuş ◽  
Fatma Sözüdönmez ◽  
Benay Can-Eke ◽  
Tülay Çoban

Antioxidant and radical scavenging properties of a series of 2-[4-(substituted piperazin-/ piperidin-1-ylcarbonyl)phenyl]-1H-benzimidazole derivatives were examined. Free radical scavenging properties of compounds 11-30 and 33 were evaluated for the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide anion radical. In addition the inhibitory effects on the NADPH-dependent lipid peroxidation levels were determined by measuring the formation of 2-thiobarbituric acid reactive substances (TBARS) using rat liver microsomes. Compound 33 which has a p-fluorobenzyl substitutent at position 1 exhibited the strongest inhibition (83%) of lipid peroxidation at a concentration of 10-3 M, while the nonsubstituted analogue 13 caused 57% inhibition. This result is fairly consistent with the antimicrobial activity results against both Staphylococcus aureus and Candida albicans.


2001 ◽  
Vol 45 (2) ◽  
pp. 382-392 ◽  
Author(s):  
Zeruesenay Desta ◽  
Nadia V. Soukhova ◽  
David A. Flockhart

ABSTRACT Isoniazid (INH) remains the most safe and cost-effective drug for the treatment and prophylaxis of tuberculosis. The use of INH has increased over the past years, largely as a result of the coepidemic of human immunodeficiency virus infection. It is frequently given chronically to critically ill patients who are coprescribed multiple medications. The ability of INH to elevate the concentrations in plasma and/or toxicity of coadministered drugs, including those of narrow therapeutic range (e.g., phenytoin), has been documented in humans, but the mechanisms involved are not well understood. Using human liver microsomes (HLMs), we tested the inhibitory effect of INH on the activity of common drug-metabolizing human cytochrome P450 (CYP450) isoforms using isoform-specific substrate probe reactions. Incubation experiments were performed at a single concentration of each substrate probe at its Km value with a range of INH concentrations. CYP2C19 and CYP3A were inhibited potently by INH in a concentration-dependent manner. At 50 μM INH (∼6.86 μg/ml), the activities of these isoforms decreased by ∼40%. INH did not show significant inhibition (<10% at 50 μM) of other isoforms (CYP2C9, CYP1A2, and CYP2D6). To accurately estimate the inhibition constants (Ki values) for each isoform, four concentrations of INH were incubated across a range of five concentrations of specific substrate probes. The meanKi values (± standard deviation) for the inhibition of CYP2C19 by INH in HLMs and recombinant human CYP2C19 were 25.4 ± 6.2 and 13 ± 2.4 μM, respectively. INH showed potent noncompetitive inhibition of CYP3A (Ki = 51.8 ± 2.5 to 75.9 ± 7.8 μM, depending on the substrate used). INH was a weak noncompetitive inhibitor of CYP2E1 (Ki = 110 ± 33 μM) and a competitive inhibitor of CYP2D6 (Ki = 126 ± 23 μM), but the mean Ki values for the inhibition of CYP2C9 and CYP1A2 were above 500 μM. Inhibition of one or both CYP2C19 and CYP3A isoforms is the likely mechanism by which INH slows the elimination of coadministered drugs, including phenytoin, carbamazepine, diazepam, triazolam, and primidone. Slow acetylators of INH may be at greater risk for adverse drug interactions, as the degree of inhibition was concentration dependent. These data provide a rational basis for understanding drug interaction with INH and predict that other drugs metabolized by these two enzymes may also interact.


Sign in / Sign up

Export Citation Format

Share Document