scholarly journals Heavy Rainfall Simulation over Sinai Peninsula Using the Weather Research and Forecasting Model

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Gamal El Afandi ◽  
Mostafa Morsy ◽  
Fathy El Hussieny

Heavy rainfall is one of major severe weather over Sinai Peninsula and causes many flash floods over the region. The good forecasting of rainfall is very much necessary for providing early warning before the flash flood events to avoid or minimize disasters. In the present study using the Weather Research and Forecasting (WRF) Model, heavy rainfall events that occurred over Sinai Peninsula and caused flash flood have been investigated. The flash flood that occurred on January 18, 2010, over different parts of Sinai Peninsula has been predicted and analyzed using the Advanced Weather Research and Forecast (WRF-ARW) Model. The predicted rainfall in four dimensions (space and time) has been calibrated with the measurements recorded at rain gauge stations. The results show that the WRF model was able to capture the heavy rainfall events over different regions of Sinai. It is also observed that WRF model was able to predict rainfall in a significant consistency with real measurements. In this study, several synoptic characteristics of the depressions that developed during the course of study have been investigated. Also, several dynamic characteristics during the evolution of the depressions were studied: relative vorticity, thermal advection, and geopotential height.

2018 ◽  
Vol 22 (2) ◽  
pp. 1095-1117 ◽  
Author(s):  
Ila Chawla ◽  
Krishna K. Osuri ◽  
Pradeep P. Mujumdar ◽  
Dev Niyogi

Abstract. Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15–18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor–Yamada–Janjic PBL and Betts–Miller–Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation of detailed land surface processes involving prognostic soil moisture evolution in Noah scheme compared to the simple Slab model. To analyse the effect of model grid spacing, two sets of downscaling ratios – (i) 1 : 3, global to regional (G2R) scale and (ii) 1 : 9, global to convection-permitting scale (G2C) – are employed. Results indicate that a higher downscaling ratio (G2C) causes higher variability and consequently large errors in the simulations. Therefore, G2R is adopted as a suitable choice for simulating heavy rainfall event in the present case study. Further, the WRF-simulated rainfall is found to exhibit less bias when compared with the NCEP FiNaL (FNL) reanalysis data.


2020 ◽  
Author(s):  
Berina M. Kilicarslan ◽  
Eren Duzenli ◽  
Heves Pilatin ◽  
Ismail Yucel ◽  
M. Tugrul Yilmaz

<p>Floods, which are considered as one of the most destructive extreme weather events, are being more severe issues with changing climate, and they are threatening both human life and property. To address flood hazard issues, this study evaluates the application of a hydro-meteorological model system as an early warning system approach. The Weather Research and Forecasting Hydrological model system (WRF-Hydro), a fully-distributed, multi-physics, multi-scale hydrologic model, has the capability of accurately capturing the flood hydrographs in terms of shape and peak time corresponding to storm precipitation. WRF-Hydro model system is implemented with meteorological forcing data obtained from the Weather Research and Forecasting (WRF) atmospheric model. WRF/WRF-Hydro model system is operated in uncoupled mode. The study area is the Oymapinar Basin in Southern Turkey has complex topographic characteristics, and in the upstream basin area, the river network originates from mountainous region. Five heavy rainfall events occurred between January 2015 and May 2015 in the basin selected to assess the model performance of simulating flood hydrograph. The model calibration process is performed by covering three heavy rainfall events, while two of them are used for validation of the model system. This study provides an initial evaluation for possible coupled atmospheric-hydrological model simulations between WRF and WRF-Hydro model systems for future applications.</p>


2015 ◽  
Vol 16 (2) ◽  
pp. 615-630 ◽  
Author(s):  
Liping Deng ◽  
Matthew F. McCabe ◽  
Georgiy Stenchikov ◽  
Jason P. Evans ◽  
Paul A. Kucera

Abstract The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.


Author(s):  
J.M. Senciales-González ◽  
J.D. Ruiz-Sinoga

Heavy rainfall events in the Mediterranean can be of high intensity, commonly exceeding 100 mm day-1, and have irregular spatio-temporal distribution. Such events can have significant impacts both on soils and human structures. The aim of this paper is to highlight a systematic comparison of synoptic conditions with heavy rainfall events in Mediterranean Southern Spain, assessing the weather types responsible for meteorological risk in specific locations of this mountainous region. To do this, we analyzed the maximum intensity of rainfall in observational periods ranging from 10 min to 24 h using a database from 132 rain gauge stations across the study area since 1943; then, the heavy rain has been associated with the weather type which triggers it. This analysis identified a pattern of heavy rainfall which differs from that previously reported in the Mediterranean area. Thus, in this research, the maximum number of heavy rainfall events uses to come from a dominant pattern of low pressures associated to front systems and East-Northeast winds; but the maximum volumes use to be associated to Cold Drops and the same winds; in addition, there are differences throughout the territory, showing several patterns and seasonal incidence when analyzing sub-zones, which may be related with different erosive conditions according to its position with respect to Atlantic or Mediterranean sea, and the entity of its relief.


2009 ◽  
Vol 48 (11) ◽  
pp. 2227-2241 ◽  
Author(s):  
Zifeng Yu ◽  
Hui Yu ◽  
Peiyan Chen ◽  
Chuanhai Qian ◽  
Caijun Yue

Abstract To evaluate the abilities of satellite retrievals in reflecting precipitation features related to tropical cyclones (TCs) affecting mainland China, four years of 6- and 24-h precipitation retrievals from three datasets, namely the Tropical Rainfall Measuring Mission satellite algorithm 3B42, version 6 (3B42), Climate Prediction Center morphed (CMORPH) product, and one based on the Geostationary Meteorological Satellite-5 infrared brightness temperature (GMS5-TBB), are compared statistically with direct measurements from surface gauge rainfall data during the periods affected by TCs. The GMS5-TBB dataset was set up by a method of considering the GMS5-TBB characteristics, hourly precipitation intensity, and horizontal distribution for landfalling TCs. The results show that in a general sense, all three satellite-retrieved rainfall datasets give quite reasonable 6- and 24-h rainfall distributions, with skill decreasing with the increase in both latitude and rainfall amount. The 3B42 has a little bit better skill than CMORPH, which is likely related to the fact that the 3B42 product has a rain gauge adjustment and CMORPH does not. Further analyses show that both 3B42 and CMORPH considerably underestimate the moderate and heavy rainfall and overestimate the very light precipitation. The overestimation of the GMS5-TBB data for the light rain is larger than that for 3B42 and CMORPH, probably due to the fact that the GMS5-TBB method considers stratiform and convective rainfall separately with a fixed stratiform rain rate of 2 mm h−1. For the heavy rainfall events, the GMS5-TBB data perform much better than the 3B42 and CMORPH data with an almost halved bias, owing to the fact that the GMS5-TBB method adopted the adjustment of the convective rain rate by considering TBB characteristics of landfalling TCs and using hourly gauge rainfall in the setup process. Since the heavy rainfall events associated with landfalling TCs are of the most concern, the compared GMS5-TBB data could be useful as an operational/research reference.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 304 ◽  
Author(s):  
Gonzalo Yáñez-Morroni ◽  
Jorge Gironás ◽  
Marta Caneo ◽  
Rodrigo Delgado ◽  
René Garreaud

The Weather Research and Forecasting (WRF) model has been successfully used in weather prediction, but its ability to simulate precipitation over areas with complex topography is not optimal. Consequently, WRF has problems forecasting rainfall events over Chilean mountainous terrain and foothills, where some of the main cities are located, and where intense rainfall occurs due to cutoff lows. This work analyzes an ensemble of microphysics schemes to enhance initial forecasts made by the Chilean Weather Agency in the front range of Santiago. We first tested different vertical levels resolution, land use and land surface models, as well as meteorological forcing (GFS/FNL). The final ensemble configuration considered three microphysics schemes and lead times over three rainfall events between 2015 and 2017. Cutoff low complex meteorological characteristics impede the temporal simulation of rainfall properties. With three days of lead time, WRF properly forecasts the rainiest N-hours and temperatures during the event, although more accuracy is obtained when the rainfall is caused by a meteorological frontal system. Finally, the WSM6 microphysics option had the best performance, although further analysis using other storms and locations in the area are needed to strengthen this result.


2013 ◽  
Vol 1 (6) ◽  
pp. 6979-7014
Author(s):  
I. Yucel ◽  
A. Onen

Abstract. Quantitative precipitation estimates are obtained with more uncertainty under the influence of changing climate variability and complex topography from numerical weather prediction (NWP) models. On the other hand, hydrologic model simulations depend heavily on the availability of reliable precipitation estimates. Difficulties in estimating precipitation impose an important limitation on the possibility and reliability of hydrologic forecasting and early warning systems. This study examines the performance of the Weather Research and Forecasting (WRF) model and the Multi Precipitation Estimates (MPE) algorithm in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in the West Black Sea Region of Turkey. Precipitations derived from WRF model with and without three-dimensional variational (3-DVAR) data assimilation scheme and MPE algorithm at high spatial resolution (4 km) are compared with gauge precipitation. WRF-derived precipitation showed capabilities in capturing the timing of precipitation extremes and in some extent the spatial distribution and magnitude of the heavy rainfall events wheras MPE showed relatively weak skills in these aspects. WRF skills in estimating such precipitation characteristics are enhanced with the application of 3-DVAR scheme. Direct impact of data assimilation on WRF precipitation reached to 12% and at some points there exists quantitative match for heavy rainfall events, which are critical for hydrological forecast.


Sign in / Sign up

Export Citation Format

Share Document