scholarly journals Anti-Icing Property of Superhydrophobic Octadecyltrichlorosilane Film and Its Ice Adhesion Strength

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Liang Ge ◽  
Guifu Ding ◽  
Hong Wang ◽  
Jinyuan Yao ◽  
Ping Cheng ◽  
...  

An octadecyltrichlorosilane (OTS) superhydrophobic film using phase-separation method was prepared to demonstrate the anti-icing property of superhydrophobic surfaces. The superhydrophobicity of the film at −5∘Cwas investigated. It was found that the prepared OTS film retained its superhydrophobicity at −5∘Cby the measurement of contact angle and roll-off angle. The icing progress of water droplets on the surface at −15∘Cwas observed. It showed that the prepared OTS film can markedly retard the icing process of water droplets and dramatically decrease the ice adhesion strength compared with that of blank surface, which can be used as anti-icing surfaces.

2013 ◽  
Vol 663 ◽  
pp. 331-334
Author(s):  
Liang Ge ◽  
Jin Yuan Yao ◽  
Hong Wang ◽  
Gui Fu Ding

In this paper, we prepared an octadecyltrichlorosilane(OTS) super-hydrophobic film using phase separation method to demonstrate the anti-icing property of super-hydrophobic surfaces. We investigated the super-hydrophobicity of the surface in -5°C environment, as well as the icing process of water droplets on the surface which proceeded at the temperature low to -15°C. We found that the prepared OTS film retained its super-hydrophobicity in the -5°C environment by the measurement of contact angle. It was observed that the icing progress of water droplets on the super-hydrophobic surface was greatly retarded. Based on the classical heterogeneous nucleation theory, it concluded that the ice formation is directly related to the surface wettability. This research would be beneficial to the preparation of anti-icing films.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Matilda Backholm ◽  
Daniel Molpeceres ◽  
Maja Vuckovac ◽  
Heikki Nurmi ◽  
Matti J. Hokkanen ◽  
...  

Abstract Superhydrophobicity is a remarkable surface property found in nature and mimicked in many engineering applications, including anti-wetting, anti-fogging, and anti-fouling coatings. As synthetic superhydrophobic coatings approach the extreme non-wetting limit, quantification of their slipperiness becomes increasingly challenging: although contact angle goniometry remains widely used as the gold standard method, it has proven insufficient. Here, micropipette force sensors are used to directly measure the friction force of water droplets moving on super-slippery superhydrophobic surfaces that cannot be quantified with contact angle goniometry. Superhydrophobic etched silicon surfaces with tunable slipperiness are investigated as model samples. Micropipette force sensors render up to three orders of magnitude better force sensitivity than using the indirect contact angle goniometry approach. We directly measure a friction force as low as 7 ± 4 nN for a millimetric water droplet moving on the most slippery surface. Finally, we combine micropipette force sensors with particle image velocimetry and reveal purely rolling water droplets on superhydrophobic surfaces.


2012 ◽  
Vol 291 (2) ◽  
pp. 427-435 ◽  
Author(s):  
Mohammad Amin Sarshar ◽  
Christopher Swarctz ◽  
Scott Hunter ◽  
John Simpson ◽  
Chang-Hwan Choi

Author(s):  
Mohammad Amin Sarshar ◽  
Christopher Swarctz ◽  
Scott Hunter ◽  
John Simpson ◽  
Chang-Hwan Choi

In this paper, the iceophobic properties of superhydrophobic surfaces are compared to those of uncoated aluminum and steel plate surfaces as investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared at the Oak Ridge National Laboratory by coating aluminum and steel plates with nano-structured hydrophobic particles. The contact angle and contact angle hysteresis measured for these surfaces ranged from 165–170° and 1–8°, respectively. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20°F with micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by using high speed cameras for 90 seconds. Results show that the developed superhydrophobic coatings significantly delay the ice formation and accretion even with the impingement of accelerated super-cooled water droplets, but there is a time scale for this phenomenon which has a clear relation with contact angle hysteresis of the samples. Among the different superhydrophobic coating samples, the plate having the lowest contact angle hysteresis showed the most pronounced iceophobic effects, while the correlation between static contact angles and the iceophobic effects was not evident. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis, rather than to have only a low contact angle, which can result in more efficient anti-icing properties in dynamic flow conditions.


Author(s):  
Halar Memon ◽  
Kiana Mirshahidi ◽  
Kamran Alasvand Zarasvand ◽  
Kevin Golovin ◽  
Davide S. A. De Focatiis ◽  
...  

AbstractA comparative study of de-icing evaluation methods was conducted in this work, and their variations in response to surface characteristics were investigated. The mechanical de-icing measurements include centrifugal, push, and tensile methods. The centrifugal and the horizontal push (shear) methods suggested a linear relationship of ice adhesion strength with surface roughness, whereas the tensile (normal) method indicated an inverse curvilinear relationship with contact angle hysteresis. A partial correlation of contact angle hysteresis on the shear-based methods was also indicated over a specified range of surface roughness. Further attempts were also made on 1H,1H,2H,2H-perfluorooctyltriethoxysilane-coated surfaces, and the ice adhesion indicated a clear reduction in the normal de-icing method, whereas the shear-based methods did not show a considerable change in ice adhesion, highlighting their mechanical forces-centric response. Lastly, a further evaluation using a hybrid de-icing method was conducted, to verify the influence of surface characteristics on ice removal involving heating, which demonstrated a partial correlation of energy consumption with the ice adhesion strength over a specified range of surface roughness. The results obtained in this study provide crucial information on the influence of surface characteristics on ice adhesion and offer material-dependent correlations of the popular de-icing evaluation methods. The conclusions could be applied to define an appropriate testing method for the evaluation of icephobic surfaces and coatings. Graphical abstract


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 648
Author(s):  
Kirill A. Emelyanenko ◽  
Alexandre M. Emelyanenko ◽  
Ludmila B. Boinovich

Ice adhesion plays a crucial role in the performance of materials under outdoor conditions, where the mitigation of snow and ice accumulation or spontaneous shedding of solid water precipitations are highly desirable. In this brief review we compare the adhesion of water and ice to different surfaces and consider the mechanisms of ice adhesion to solids basing on the surface forces analysis. The role of a premelted or quasi-liquid layer (QLL) in the ice adhesion is discussed with the emphasis on superhydrophobic surfaces, and the temperature dependence of ice adhesion strength is considered with an account of QLL. We also very briefly mention some recent methods for the measurement of ice adhesion strength to the icephobic engineering materials outlining the problems which remain to be experimentally solved.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 771 ◽  
Author(s):  
Qiang Xie ◽  
Tianhui Hao ◽  
Jifeng Zhang ◽  
Chao Wang ◽  
Rongkui Zhang ◽  
...  

Coatings with anti-icing performance possess hydrophobicity and low ice adhesion strength, which delay ice formation and make ice removal easier. In this paper, the anti-icing performance of nano/microsilica particle-filled amino-terminated PDMS (A-PDMS)-modified epoxy coatings was investigated. In the process, the influence of the addition of A-PDMS on the hydrophobicity and ice adhesion strength was investigated. Furthermore, the influences of various weight ratios of nanosilica/microsilica (Rn/m) on the hydrophobicity and ice adhesion strength of the coating were investigated. Hydrophobicity was evaluated by contact angle (CA) and contact angle hysteresis (CAH) tests. Ice adhesion strength was measured by a centrifugal adhesion test. The addition of A-PDMS markedly increased hydrophobicity and decreased ice adhesion. The size combination of particles obviously affects hydrophobicity but has little effect on ice adhesion. Finally, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to reveal the anti-icing mechanism of the coatings.


2014 ◽  
Vol 314 ◽  
pp. 241-250 ◽  
Author(s):  
T. Bharathidasan ◽  
S. Vijay Kumar ◽  
M.S. Bobji ◽  
R.P.S. Chakradhar ◽  
Bharathibai J. Basu

Author(s):  
J. Tong ◽  
L. Eyring

There is increasing interest in composites containing zirconia because of their high strength, fracture toughness, and its great influence on the chemical durability in glass. For the zirconia-silica system, monolithic glasses, fibers and coatings have been obtained. There is currently a great interest in designing zirconia-toughened alumina including exploration of the processing methods and the toughening mechanism.The possibility of forming nanocrystal composites by a phase separation method has been investigated in three systems: zirconia-alumina, zirconia-silica and zirconia-titania using HREM. The morphological observations initially suggest that the formation of nanocrystal composites by a phase separation method is possible in the zirconia-alumina and zirconia-silica systems, but impossible in the zirconia-titania system. The separation-produced grain size in silica-zirconia system is around 5 nm and is more uniform than that in the alumina-zirconia system in which the sizes of the small polyhedron grains are around 10 nm. In the titania-zirconia system, there is no obvious separation as was observed in die alumina-zirconia and silica-zirconia system.


Sign in / Sign up

Export Citation Format

Share Document