scholarly journals Effects of Nitride on the Tribological Properties of the Low Carbon Alloy Steel

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yuh-Ping Chang ◽  
Jin-Chi Wang ◽  
Jeng-Haur Horng ◽  
Li-Ming Chu ◽  
Yih-Chyun Hwang

The technology of composite heat treatment is used popularly for low friction and wear resistance of drive elements. A large number of papers about the heat treatment technology had been proposed. Especially, the nitride treatment has been used widely for the purpose of wear resistance and low friction in the industry. Therefore, the self-developed vertical ball/disk friction tester with the measurement system was used to study the effects of nitride on the tribological properties of the low carbon alloy steel—SCM415— in this study. The experiments were conducted under dry and severe wear conditions. The variations of friction coefficient and surface magnetization were simultaneously recorded during dynamic friction process. After each test, the microstructures of the wear particles were observed and analyzed under a SEM, and the depth of wear track is measured by means of a surface tester. According to the experimental results, the wear resistance of the specimens with carburizing-nitride is significantly larger than the case of nitride-carburizing. Moreover, the surface magnetization was especially larger for the case of nitride-carburizing. As a result, the wear particles always stay in the interfaces and the wear mechanism becomes complex. Therefore, it is necessary to put nitride after carburizing for the composite heat treatments.

2013 ◽  
Vol 311 ◽  
pp. 477-481
Author(s):  
Yuh Ping Chang ◽  
Huann Ming Chou ◽  
Jeng Haur Horng ◽  
Li Ming Chu ◽  
Zi Wei Huang

The bad quality of machining surfaces caused by the micro wear of pressing parts has been a very big trouble for the engineers over the past decades. In order to decrease the surface wear, the technology of heat treatment is used popular. Many papers about the heat treatment technology had been proposed. Especially, the deep cryogenic treatment has been used widely for the purpose of wear-resistance in the industry. Moreover, the method of using variations of surface magnetization to monitor the dynamic tribological properties between the metal pairs has been applied successfully by the author. Therefore, this paper is base on the above statements to further investigate the tribological properties of the tool steel by deep cryogenic treatment. It can be clarified for effects of different deep cryogenic treatment temperatures on wear-resistance of the tool steel DC53. Besides, the purpose of better quality and faster product speed of the pressing process can then be obtained.


2006 ◽  
Vol 129 (4) ◽  
pp. 523-529 ◽  
Author(s):  
Ping Huang ◽  
Rong Liu ◽  
Xijia Wu ◽  
Matthew X. Yao

The chemical composition of Stellite® 21 alloy was modified by doubling the molybdenum (Mo) content for enhanced corrosion and wear resistance. The specimens were fabricated using a casting technique. Half of the specimens experienced a heat treatment at 1050°C for an hour. The microstructure and phase analyses of the specimens were conducted using electron scanning microscopy and X-ray diffraction. The mechanical properties of the specimens were determined in terms of the ASTM Standard Test Method for Tension Testing of Metallic Materials (E8-96). The mechanical behaviors of individual phases in the specimen materials were investigated using a nano-indentation technique. The wear resistance of the specimens was evaluated on a ball-on-disk tribometer. The experimental results revealed that the increased Mo content had significant effects on the mechanical and tribological properties of the low-carbon Stellite® alloy and the heat treatment also influenced these properties.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 865
Author(s):  
Yuh-Ping Chang ◽  
Hsiang-Yu Wang ◽  
Huann-Ming Chou

The load on drive elements under extreme pressure conditions is significantly larger than that used in machine tools. When operating under a heavy load for a long period, large deformation and severe wear between the ball and the track are more likely to occur. To reduce wear, the most fundamental solution is to improve the surface properties of the material. Moreover, heat treatment is the most effective method to improve the surface properties of materials, thereby achieving wear resistance and low friction. It is necessary to develop a new heat treatment technology for wear resistance in extreme pressure conditions. Therefore, this study conducted experiments using a reciprocating friction tester. The responses of electrical contact resistance and the friction coefficient were measured synchronously to investigate wear resistance and low friction of the alloy steels after the induction heat treatment. Then, the results were compared and verified with low-carbon alloy steel after the traditional carburizing heat treatment. The experimental results show that the application of new induction heat treatment technology can not only improve the performance of drive components, but also save time and energy, and streamline the production process of the drive components. Therefore, the results of these wear analyses confirm that the induction heat treatment mode can replace the traditional carburizing heat treatment mode for drive elements.


Alloy Digest ◽  
1973 ◽  
Vol 22 (12) ◽  

Abstract CANNON-MUSKEGON 8620 is a low-carbon triple-alloy steel capable of being carburized for wear resistance or heat treated for toughness. This steel is suitable for many engineering applications, and is used in large quantities in the investment casting industry for small parts. A higher silicon content is permissible in this steel than in AISI 8620 (wrought) alloy steel. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: SA-299. Producer or source: Cannon-Muskegon Corporation.


2018 ◽  
Vol 27 (47) ◽  
pp. 101
Author(s):  
Sandra Arias ◽  
Maryory Gómez ◽  
Esteban Correa ◽  
Félix Echeverría-Echeverría ◽  
Juan Guillermo Castaño

Nickel-Boron autocatalytic coatings are widely used in several industries to improve mechanical properties of materials such as hardness and wear resistance. Tribological properties were evaluated in Ni-B autocatalytic coatings deposited on AISI/SAE 1018 carbon steel before and after a heat treatment at 450 °C for one hour. Tribological tests were carried out by dry sliding, using a load of 5 N and a sliding speed of 0.012 m/s, in a homemade ball-on-disk tribometer, which followed ASTM G99 standard. According to the tribological evaluation, the heat treatments applied to Ni-B coatings improved their tribological performance. This research corroborates that by applying an adequate heat treatment, hardness and wear resistance of Ni-B coatings can be improved significantly.


2019 ◽  
Vol 26 (1) ◽  
pp. 402-411 ◽  
Author(s):  
Zhiwei Wu ◽  
Yan Wang ◽  
Sihao Li ◽  
Xiaoyong Wang ◽  
Zhaojun Xu ◽  
...  

AbstractBCN coatings with different chemical compositions were prepared using RF magnetron sputtering via adjusting N2 flow. The influence of N2 flow on the bonding structure, mechanical and tribological properties of coating was studied. The structural analysis indicated the coexistence of B-N, B-C, and N-C bonds, suggesting the formation of a ternary BCN hybridization. The maximum Vickers hardness of 1614.7 HV was obtained at the low N2 flow (5 sccm), whereas the adhesion strength of BCN coatings on 316L stainless steel was improved with an increase of N2 flow. The friction behavior of BCN coatings sliding against different materials (acerbic, beech and lauan wood) was performed using ball-on-disk tribo-meter in air. The low friction coefficient was easier to obtain as sliding against hardwood i.e. acerbic balls. BCN-5 and BCN-10 coatings presented better wear resistance regardless of softwood or hardwood, whilst other two coatings were more suitable for mating softwood i.e. beech and lauan.


2011 ◽  
Vol 339 ◽  
pp. 502-505
Author(s):  
Qi Ming Yang ◽  
Li Jie Yang

Fracturing pump valve's failure, except wear and tear factors, and also decided by the scope of it's contact stress, material and heat treatment in technology. Through the analysis of these, some conclusions had been found: The content of remnant austenite would be affected the performance of wear resistance, and the core hardness would be directly affected the working life of it. If the choice of the material and heat treatment technology was not been suitable, and the core intensity was not enough, it could loss the capability of sealing. According to the failure mechanism, used low chrome(nickel) steel, and the heat treatment of carburize+heat hardening+low-temperature tempering was reasonable.


2018 ◽  
Vol 24 (3) ◽  
pp. 50-54
Author(s):  
Jan Senatorski ◽  
Jan Tacikowski ◽  
Janusz Trojanowski ◽  
Paweł Mączyński

Nitriding of carbon steels does not allow for adequate hardening of the substrate of layers and core required in some applications. Such hardening can be achieved by using further heat treatment. As a result of this heat treatment, the zone of nitrides vanishes and a nitro-carbon martensite structure is formed, additionally hardened by ageing. The carried out tribological tests have shown that subjecting nitrided carbon steel to further hardening treatment significantly improves its wear resistance in comparison to nitrided steel, and the zone of good wear resistance goes deeper.


Author(s):  
S. I. Bogodukhov ◽  
E. S. Kozik ◽  
E. V. Svidenko

Hard alloys are popular materials widely used in the toolmaking industry. Refractory carbides included in their composition make carbide tools very hard (80 to 92 HRA) and heat-resistant (800 to 1000 °С) so as they can be used at cutting speeds several times higher than those used for high-speed steels. However, hard alloys differ from the latter by lower strength (1000 to 1500 MPa) and the absence of impact strength, and this constitutes an urgent problem. We studied the influence of thermal cycling modes on the mechanical and tribological properties of VK8 (WC–8Co) hard alloy used in the manufacture of cutters and cutting inserts for metal working on metal-cutting machines. As the object of study, we selected 5×5×35 mm billets made of VK8 (WC–8Co) alloy manufactured by powder metallurgy methods at Dimitrovgrad Tool Plant. The following criteria were selected for heat treatment mode evaluation: Vickers hardness, flexural strength, and mass wear resistance (as compared to the wear of asreceived samples that were not heat treated). Plates in the initial state and after heat treatment were subjected to abrasion tests. Wear results were evaluated by the change in the mass of plates. Regularities of the influence of various time and temperature conditions of heat treatment on the tribological properties of products made of VK group tungsten hard alloys were determined. An increase in the number of thermal cycling cycles improved such mechanical properties of the VK8 hard alloy as strength and hardness. When repeating the cycles five times, an increase in abrasive wear resistance was obtained compared to the initial nonheat-treated sample. The elemental composition of the VK8 hard alloy changed insignificantly after thermal cycling, only a slight increase in oxygen was observed on the surface of plates. The grain size after thermal cycling increased in comparison with the initial VK8 hard alloy. It was found that VK8 hard alloy thermocyclic treatment leads to a change in the phase composition. X-ray phase analysis showed the presence of a large amount of α-Co with an hcp-type lattice on the surface of a hard alloy and a solid solution of WC in α-Co. A change in the cobalt modification ratio causes a decrease in microstresses. An analysis of the carbide phase structure state showed that the size of crystallites and microstresses changed after thermal cycling. The lattice constant of the cobalt cubic solid solution decreased, which may indicate a decrease in the amount of tungsten carbide and carbon dissolved in it. Statistical processing of experimental results included the calculation of the average value of the mechanical property, its dispersion and standard deviation in the selected confidence interval.


2012 ◽  
Vol 84 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Ming-Chun Zhao ◽  
Jing-Li Li ◽  
Ying-Chao Zhao ◽  
Xiao-Fang Huang ◽  
Jin-Zhu Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document