scholarly journals Preparation of Laccase Immobilized Cryogels and Usage for Decolorization

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Murat Uygun

Poly(methyl methacrylate-co-glycidyl methacrylate) (poly(MMA-co-GMA)) cryogels were synthesized by radical cryopolymerization technique. Then, laccase enzyme was covalently attached to the cryogel and characterized by using swelling studies and SEM and EDX analyses. Kinetic properties and optimum conditions of the immobilized and free laccase were studied and it was found that of the immobilized laccase was lower than that of free laccase. of the immobilized laccase was increased upon immobilization. Optimum pH was found to be 4.0 for each type of laccase, while optimum temperature was shifted to the warmer region after the immobilization. It was also found that thermal stability of the immobilized laccase was higher than that of free laccase. Immobilized laccase could be used for 10 times successive reuse with no significant decrease in its activity. Also, these laccase immobilized cryogels were successfully used for the decolorization of seven different dyes.

Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 641 ◽  
Author(s):  
Thanapon Charoenwongpaiboon ◽  
Rath Pichyangkura ◽  
Robert A. Field ◽  
Manchumas Hengsakul Prousoontorn

Fructooligosaccharides are well-known carbohydrate molecules that exhibit good probiotic activity and are widely used as sweeteners. Inulin-type fructooligosaccharides (IFOs) can be synthesized from sucrose using inulosucrase. In this study, cross-linked enzyme aggregates (CLEAs) of Lactobacillus reuteri 121 inulosucrase (R483A-LrInu) were prepared and used as a biocatalyst for IFOs production. Under optimum conditions, R483A-LrInu CLEAs retained 42% of original inulosucrase activity. Biochemical characterization demonstrated that the optimum pH of inulosucrase changed from 5 to 4 after immobilization, while the optimum temperature was unchanged. Furthermore, the pH stability and thermostability of the R483A-LrInu CLEAs was significantly improved. IFOs product characterization indicated that the product specificity of the enzyme was impacted by CLEA generation, producing a narrower range of IFOs than the soluble enzyme. In addition, the R483A-LrInu CLEAs showed operational stability in the batch synthesis of IFOs.


2019 ◽  
Vol 8 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Priyanka Ghosh ◽  
Uma Ghosh

Background: Laccases are important enzymes that have numerous applications in different biotechnological sectors. Objective: The aim was to purify laccase from Aspergillus flavus PUF5, successfully immobilize it on coconut fiber and characterize different physical and kinetic properties under both free and immobilize conditions. Methods: Laccase from A. flavus PUF5 was purified using ammonium sulfate precipitation, followed by DEAE column chromatography and gel filtration using Sephadex G100. The molecular weight was determined through SDS-PAGE (12%). It was immobilized on pretreated coconut fiber through crosslinking by glutaraldehyde (4% v/v). Physical and kinetic parameters like optimum temperature, pH, thermostability, the effect of additives, activation energy, Km and Vmax for free and immobilized laccase were also analyzed. Recycling stability of the immobilized laccase was further determined. Results: The extracellular laccase (65 kDa) was purified up to homogeneity and was immobilized on acid-pretreated coconut fiber by 4% (v/v) glutaraldehyde solution at 30°C, pH 5.0. Activation energy (Ea) of free and immobilized laccase for oxidation of guaiacol was found to be 24.69 and 32.76 kJ mol-1 respectively. Immobilized laccase showed higher melting temperature (Tm) of (82.5°C) than free enzyme (73°C). Km and Vmax for free and immobilized laccase were found to be 0.67 mM, 0.70 mM and 280 U/mg, 336 U/mg respectively when guaiacol was used as substrate. Additionally, in immobilized condition laccase retained ˃80% of its initial activity after use till six repeated cycles. Conclusion: The purified laccase enzyme and the cheap immobilization seem to be a prospective process for different biotechnological and industrial applications.


2020 ◽  
Vol 15 (3) ◽  
pp. 206-214
Author(s):  
Borja Alarcón ◽  
Roberto de Armas ◽  
Carlos Vicente ◽  
María E. Legaz

Aims and Objectives: This study aimed to characterize a coniferyl alcohol dehydrogenase from sugarcane stalks. Also, the purification of CAD from sugarcane stalks was also carried out to study kinetic properties and substrate specificity. Background: Sugarcane plants contain an alcohol dehydrogenase able to reduce both coniferyl and sinapyl aldehydes to their correspondent alcohols, although there are reasonable grounds for suspecting that these are two distinct enzymes. Methods: The enzyme, coniferyl alcohol dehydrogenase was 125-fold purified from sugarcane stalks. Its activity was estimated by HPLC by calculating the amount of product formed. Results: The enzyme showed an optimum pH value of 7.9, at an optimum temperature of 20-22°C and a molecular mass of 48 kDa. The Km value for coniferyl alcohol was 3.03 µM and the enzyme was shown to be inhibited by an excess of the substrate from 17 µM. This dehydrogenase showed a similar affinity to sinapyl alcohol (Km 1.78 µM). Conclusions: This paper provides circumstantial evidence about the existence of two different alcohol dehydrogenases, specific to each of the substrates.


2010 ◽  
Vol 8 (3) ◽  
pp. 372-376
Author(s):  
Sari Edi Cahyaningrum ◽  
Narsito Narsito ◽  
Sri Juari Santoso ◽  
Rudiana Agustini

In this study, papain was immobilized on chitosan with Mg(II) cosslinked agent. Studies on free and immobilized papain systems for determination of optimum pH, optimum temperatur, thermal stability and reusability were carried out. The results showed that free papain had optimum pH 6.5 and optimum temperature 55 °C while the immobile papain hadoptimum pH 8 and optimum temperature 80 °C. The thermal stability of the immobilized papain, relative to that of the free papain, was markedly increased. The immobilized papain can be reused for at least six times.   Keywords: papain, immobilization, chitosan


2014 ◽  
Vol 8 (3) ◽  
pp. 64-69
Author(s):  
Shamam saady Abdulredha ◽  
Abdulkareem jasim Hashim ◽  
Abduljabar Abas Ali ◽  
Batool Imran Dheeb

Pleurotus ostreatus produced 2.93 U/mg of laccase in solid state fermentation (SSF) using barley bran as substrate under optimum conditions. The optimum SSF conditions were: pH 6.5; temperature, 25Cº; inoculums size 3.5 mm and moisture content, 1:1.5 w/v. Laccase was partially purified 8.29 fold with specific activity 17.5 U/mg by ion exchange chromatography after curd enzyme concentrated by dialysis against the solid sucrose. Partially purified laccase had an optimum pH of 6.5 and was stable in the pH range from 6.5 to 7.5. The optimum temperature was 45 Cº and it displayed considerable stability within the range 15 to 45 Cº with 1h incubation as well as The ability of partial purified laccase to decolorize of textile dyes showed that the blue H3R dye was completely decolorized in all concentrations within first min while yellow FG and red 3B dyes were decolorized in different percentage.


2009 ◽  
Vol 15 (6) ◽  
pp. 545-552 ◽  
Author(s):  
Erzheng Su ◽  
Tao Xia ◽  
Liping Gao ◽  
Qianying Dai ◽  
Zhengzhu Zhang

Tannase was effectively immobilized on alginate by the method of crosslinking-entrapment-crosslinking with a high activity recovery of 76.6%. The properties of immobilized tannase were investigated. Its optimum temperature was determined to be 35 ° C, decreasing 10 °C compared with that of free enzyme, whereas the optimum pH of 5.0 did not change. The thermal and pH stabilities of immobilized tannase increased to some degree. The kinetic parameter, Km, for immobilized tannase was estimated to be 11.6 × 10-4 mol/L. Fe2+ and Mn2+ could activate the activity of immobilized tannase. The immobilized tannase was also applied to treat the tea beverage to investigate its haze-removing effect. The content of non-estern catechins in green tea, black tea and oolong tea increased by 52.17%, 12.94% and 8.83%, respectively. The content of estern catechins in green tea, oolong tea and black tea decreased by 20.0%, 16.68% and 5.04%, respectively. The anti-sediment effect of green tea infusion treated with immobilized tannase was significantly increased. The storage stability and reusability of the immobilized tannase were improved greatly, with 72.5% activity retention after stored for 42 days and 86.9% residual activity after repeatedly used for 30 times.


2014 ◽  
Vol 10 (2) ◽  
pp. 211-222 ◽  
Author(s):  
Valentin Désiré Guiama ◽  
Robert Germain Beka ◽  
Esther Ngah ◽  
David Gabriel Libouga ◽  
Dominique Vercaigne-Marko ◽  
...  

Abstract This study investigated a novel procedure of Solanum aethiopicum Shum fruits extract (SASFE) preparation using multivariate experimental designs as factorial and Box–Behnken. The thermal stability of optimized extract as well as its influence on the milk solids in curd was determined. The results showed that extraction time, fruit maturity and pH did not affect significantly SASFE preparation, while the amount of fruits, extraction temperature and NaCl concentration of extractant had a significant effect (p < 0.05). The greatest coagulant index was obtained under the following conditions: 12.5% of fruits, 25°C of extraction temperature and 4% NaCl concentration of extractant. It was thermosensitive and exhibited optimum temperature at 50°C. There was no statistical difference between SASFE and calf rennet in terms of solids yield in curd, estimated yield and actual yield. On the basis of these results, SASFE can be used as a vegetable alternative to calf rennet.


1999 ◽  
Vol 30 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Rubens Cruz ◽  
Vinícius D'Arcádia Cruz ◽  
Juliana Gisele Belote ◽  
Marcelo de Oliveira Khenayfes ◽  
Claudia Dorta ◽  
...  

<FONT FACE="Symbol">b</font>-Galactosidase or <FONT FACE="Symbol">b</font>-D-galactoside-galactohydrolase (EC. 3.2.1.23) is an important enzyme industrially used for the hydrolysis of lactose from milk and milk whey for several applications. Lately, the importance of this enzyme was enhanced by its galactosyltransferase activity, which is responsible for the synthesis of transgalactosylated oligosaccharides (TOS) that act as functional foods, with several beneficial effects on consumers. Penicillium simplicissimum, a strain isolated from soil, when grown in semi-solid medium showed good productivity of <FONT FACE="Symbol">b</font>-galactosidase with galactosyltransferase activity. The optimum pH for hydrolysis was in the 4.04.6 range and the optimum pH for galactosyltransferase activity was in the 6.07.0 range. The optimum temperature for hydrolysis and transferase activity was 55-60°C and 50°C, respectively, and the enzyme showed high thermostability for the hydrolytic activity. The enzyme showed a potential for several industrial applications such as removal of 67% of the lactose from milk and 84% of the lactose from milk whey when incubated at their original pH (4.5 and 6.34, respectively) under optimum temperature conditions. When incubated with a 40% lactose solution in 150 mM McIlvaine buffer, pH 4.5, at 55°C the enzyme converted 86.5% of the lactose to its component monosaccharides. When incubated with a 60% lactose solution in the same buffer but at pH 6.5 and 50°C, the enzyme can synthetize up to 30.5% TOS, with 39.5% lactose and 30% monosaccharides remaining in the preparation.


2012 ◽  
Vol 50 (No. 2) ◽  
pp. 69-76 ◽  
Author(s):  
M. Erisir ◽  
E. Ercel ◽  
S. Yilmaz ◽  
S. Ozan

The assay conditions needed to achieve maximal activity of liver and kidney arginase in diabetic and non-diabetic rats were investigated and compared. The physicochemical and kinetic properties of liver arginase in diabetic and control rats were very similar, those of kidney arginase were significantly different. It was found that preincubation temperature (68&deg;C), preincubation period (20 min), optimum pH (10.1) of liver arginase and K<sub>m</sub> (3.2) for its substrate, L-arginine, did not change in diabetic and non-diabetic rats. As a consequence of diabetes, the optimum Mn<sup>2+</sup> concentration for liver arginase only changed from 1 to 2 mM. Although the preincubation temperature and period for activation of kidney arginase in control rats was unnecessary, they were found to be 56&ordm;C and 12 min in diabetic rats. The pH profile of arginase in kidney of diabetic rats was different from that of control rats. The K<sub>m</sub> value (6.7) of arginase for L-arginine in kidney is unchanged in diabetes whereas a marked decrease in V<sub>max</sub> was found. Optimum Mn<sup>2+</sup> concentration (2 mM) for kidney arginase was unchanged in diabetes. The activity of arginase in liver of diabetic animals was higher 1.5 to 1.7 times than that of controls. Diabetes caused an about 53% decrease of arginase activity in kidney of female rats, 26% in that of males. These findings may suggest an idea that encoded arginases by separate gene loci may be affected differently by the pathological and hormonal status.


2011 ◽  
Vol 5 (3) ◽  
pp. 14-21
Author(s):  
Muhamed Omar Abdulatif ◽  
Hyder H. Assmaeel ◽  
Raghad kadhim Obeid ◽  
Ayat Adnan Abbas

he Xylanase producing strain Aspergillus niger was isolated from soil on potato dextrose agar in the presence of xylan as its first substrate for primary isolation, and then grown under liquid medium fermentation in the presence of crude xylan (rice husk) to produce D-Xylanase. the optimum conditions were determined as follows: the Optimum pH for xylanase production was found pH 5.0, xylanase was induced by xylan (rice husk) 0.1% and the production was (61.221 U/ml) and nitrogen source Yeast extract recorded highest enzyme production( 89.71 U/ml), and repressed by carbon source xylose the highest enzyme production (88.69 U/ml). The optimum temperature was 40°с for xylanase production was (35.15 U/ml), the optimum period after 7 days of incubation was (52.33 U/ml) ,the optimum substrate concentration 0.1% was (45.95 U/ml), and the optimum inoculum size was 1 x 106 (spore /ml) recorded (57.19 U/ml ).


Sign in / Sign up

Export Citation Format

Share Document