scholarly journals A Comparison of Synonymous Codon Usage Bias Patterns in DNA and RNA Virus Genomes: Quantifying the Relative Importance of Mutational Pressure and Natural Selection

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Youhua Chen

Codon usage bias patterns have been broadly explored for many viruses. However, the relative importance of mutation pressure and natural selection is still under debate. In the present study, I tried to resolve controversial issues on determining the principal factors of codon usage patterns for DNA and RNA viruses, respectively, by examining over 38000 ORFs. By utilizing variation partitioning technique, the results showed that 27% and 21% of total variation could be attributed to mutational pressure, while 5% and 6% of total variation could be explained by natural selection for DNA and RNA viruses, respectively, in codon usage patterns. Furthermore, the combined effect of mutational pressure and natural selection on influencing codon usage patterns of viruses is substantial (explaining 10% and 8% of total variation of codon usage patterns). With respect to GC variation, GC content is always negatively and significantly correlated with aromaticity. Interestingly, the signs for the significant correlations between GC, gene lengths, and hydrophobicity are completely opposite between DNA and RNA viruses, being positive for DNA viruses while being negative for RNA viruses. At last, GC12 versus G3s plot suggests that natural selection is more important than mutational pressure on influencing the GC content in the first and second codon positions.

2011 ◽  
Vol 57 (12) ◽  
pp. 1016-1023 ◽  
Author(s):  
Xue Lian Luo ◽  
Jian Guo Xu ◽  
Chang Yun Ye

In this study, we analysed synonymous codon usage in Shigella flexneri 2a strain 301 (Sf301) and performed a comparative analysis of synonymous codon usage patterns in Sf301 and other strains of Shigella and Escherichia coli . Although there was a significant variety in codon usage bias among different Sf301 genes, there was a slight but observable codon usage bias that could primarily be attributable to mutational pressure and translational selection. In addition, the relative abundance of dinucleotides in Sf301 was observed to be independent of the overall base composition but was still caused by differential mutational pressure; this also shaped codon usage. By comparing the relative synonymous codon usage values across different Shigella and E. coli strains, we suggested that the synonymous codon usage pattern in the Shigella genomes was strain specific. This study represents a comprehensive analysis of Shigella codon usage patterns and provides a basic understanding of the mechanisms underlying codon usage bias.


2021 ◽  
Author(s):  
Neetu Tyagi ◽  
Rahila Sardar ◽  
Dinesh Gupta

AbstractThe Coronavirus disease 2019 (COVID-19) outbreak caused by Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2) poses a worldwide human health crisis, causing respiratory illness with a high mortality rate. To investigate the factors governing codon usage bias in all the respiratory viruses, including SARS-CoV-2 isolates from different geographical locations (~62K), including two recently emerging strains from the United Kingdom (UK), i.e., VUI202012/01 and South Africa (SA), i.e., 501.Y.V2 codon usage bias (CUBs) analysis was performed. The analysis includes RSCU analysis, GC content calculation, ENC analysis, dinucleotide frequency and neutrality plot analysis. We were motivated to conduct the study to fulfil two primary aims: first, to identify the difference in codon usage bias amongst all SARS-CoV-2 genomes and, secondly, to compare their CUBs properties with other respiratory viruses. A biased nucleotide composition was found as most of the highly preferred codons were A/U-ending in all the respiratory viruses studied here. Compared with the human host, the RSCU analysis led to the identification of 11 over-represented codons and 9 under-represented codons in SARS-CoV-2 genomes. Correlation analysis of ENC and GC3s revealed that mutational pressure is the leading force determining the CUBs. The present study results yield a better understanding of codon usage preferences for SARS-CoV-2 genomes and discover the possible evolutionary determinants responsible for the biases found among the respiratory viruses, thus unveils a unique feature of the SARS-CoV-2 evolution and adaptation. To the best of our knowledge, this is the first attempt at comparative CUBs analysis on the worldwide genomes of SARS-CoV-2, including novel emerged strains and other respiratory viruses.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 604 ◽  
Author(s):  
Naveen Kumar ◽  
Diwakar Kulkarni ◽  
Benhur Lee ◽  
Rahul Kaushik ◽  
Sandeep Bhatia ◽  
...  

Hendra virus (HeV) and Nipah virus (NiV) are among a group of emerging bat-borne paramyxoviruses that have crossed their species-barrier several times by infecting several hosts with a high fatality rate in human beings. Despite the fatal nature of their infection, a comprehensive study to explore their evolution and adaptation in different hosts is lacking. A study of codon usage patterns in henipaviruses may provide some fruitful insight into their evolutionary processes of synonymous codon usage and host-adapted evolution. Here, we performed a systematic evolutionary and codon usage bias analysis of henipaviruses. We found a low codon usage bias in the coding sequences of henipaviruses and that natural selection, mutation pressure, and nucleotide compositions shapes the codon usage patterns of henipaviruses, with natural selection being more important than the others. Also, henipaviruses showed the highest level of adaptation to bats of the genus Pteropus in the codon adaptation index (CAI), relative to the codon de-optimization index (RCDI), and similarity index (SiD) analyses. Furthermore, a comparison to recently identified henipa-like viruses indicated a high tRNA adaptation index of henipaviruses for human beings, mainly due to F, G and L proteins. Consequently, the study concedes the substantial emergence of henipaviruses in human beings, particularly when paired with frequent exposure to direct/indirect bat excretions.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Huipeng Yao ◽  
Mengyu Chen ◽  
Zizhong Tang

Background. Flaviviridae viruses are single-stranded, positive-sense RNA viruses, which threat human constantly mediated by mosquitoes, ticks, and sandflies. Considering the recent increase in the prevalence of the family virus and its risk potential, we investigated the codon usage pattern to understand its evolutionary processes and provide some useful data to develop the medications for most of Flaviviridae viruses. Results. The overall extent of codon usage bias in 65 Flaviviridae viruses is low with the average value of GC contents being 50.5% and the highest value being 55.9%; the lowest value is 40.2%. ENC values of Flaviviridae virus genes vary from 48.75 to 57.83 with a mean value of 55.56. U- and A-ended codons are preferred in the Flaviviridae virus. Correlation analysis shows that the positive correlation between ENC value and GC content at the third nucleotide positions was significant in this family virus. The result of analysis of ENC, neutrality plot analysis, and correlation analysis revealed that codon usage bias of all the viruses was affected mainly by natural selection. Meanwhile, according to correspondence analysis (CoA) based on RSCU and phylogenetic analysis, the Flaviviridae viruses mainly are made up of two groups, Group I (Yellow fever virus, Apoi virus, Tembusu virus, Dengue virus 1, and others) and Group II (West Nile virus lineage 2, Japanese encephalitis virus, Usutu virus, Kedougou virus, and others). Conclusions. All in, the bias of codon usage pattern is affected not only by compositional constraints but also by natural selection. Phylogenetic analysis also illustrates that codon usage bias of virus can serve as an effective means of evolutionary classification in Flaviviridae virus.


2021 ◽  
Vol 15 (3) ◽  
pp. 347-352
Author(s):  
Caixia Liu ◽  
Zhilong He ◽  
Yongzhong Chen ◽  
Wei Tang ◽  
Li Ma ◽  
...  

Camellia oleifera is an essential oil woody plant. The development of the camellia industry can relieve the a China’s pressure of importing edible oil. However, there are few studies on the codon usage bias (CUB) in C. oleifera genes. In this study, the codon usage patterns were analyzed by 35,178 reconstructed genes from the C. oleifera transcriptome. The mean GC and GC3 content of all transcripts was 51.14% and 55.43% respectively. A total of 18 optimal codons were identified, 15 of them ending with A or U. Which indicated the use of A/U codons was high frequency. Furthermore, the natural selection and mutational pressure, both influenced CUB in C. oleifera, however the natural selection was the most deciding factor. The nucleotide excretion of C. oleifera genome is rich. C. oleifera prefers A/U ending codons, and nature selection is one of the most important factors affecting CUB. This study will lay a theoretical foundation for the research of molecular evolution and genetic engineering in C. oleifera.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Hua Feng ◽  
Joaquim Segalés ◽  
Fangyu Wang ◽  
Qianyue Jin ◽  
Aiping Wang ◽  
...  

Porcine circoviruses (PCVs) are distributed in swine herds worldwide and represent a threat to the health of domestic pigs and the profits of the swine industry. Currently, four PCV species, including PCV-1, PCV-2, PCV-3 and PCV-4, have been identified in China. Considering the ubiquitous characteristic of PCVs, the new emerged PCV-4 and the large scale of swine breeding in China, an overall analysis on codon usage bias for Chinese PCV sequences was performed by using the major proteins coding sequences (ORF1 and ORF2) to better understand the relationship of these viruses with their host. The data from genome nucleotide frequency composition and relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of AT pair and the existence of a certain codon usage bias in all PCVs. However, the values of an effective number of codons (ENC) revealed that the bias was of low magnitude. Principal component analysis, ENC-plot, parity rule two analysis and correlation analysis suggested that natural selection and mutation pressure were both involved in the shaping of the codon usage patterns of PCVs. However, a neutrality plot revealed a stronger effect of natural selection than mutation pressure on codon usage patterns. Good host adaptation was also shown by the codon adaptation index analysis for all these viruses. Interestingly, obtained data suggest that PCV-4 might be more adapted to its host compared to other PCVs. The present study obtained insights into the codon usage pattern of PCVs based on ORF1 and ORF2, which further helps the understanding the molecular evolution of these swine viruses.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 912
Author(s):  
Saadullah Khattak ◽  
Mohd Ahmar Rauf ◽  
Qamar Zaman ◽  
Yasir Ali ◽  
Shabeen Fatima ◽  
...  

The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons’ A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome’s level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1169
Author(s):  
Xin Li ◽  
Xiaocen Wang ◽  
Pengtao Gong ◽  
Nan Zhang ◽  
Xichen Zhang ◽  
...  

Giardia duodenalis, a flagellated parasitic protozoan, the most common cause of parasite-induced diarrheal diseases worldwide. Codon usage bias (CUB) is an important evolutionary character in most species. However, G. duodenalis CUB remains unclear. Thus, this study analyzes codon usage patterns to assess the restriction factors and obtain useful information in shaping G. duodenalis CUB. The neutrality analysis result indicates that G. duodenalis has a wide GC3 distribution, which significantly correlates with GC12. ENC-plot result—suggesting that most genes were close to the expected curve with only a few strayed away points. This indicates that mutational pressure and natural selection played an important role in the development of CUB. The Parity Rule 2 plot (PR2) result demonstrates that the usage of GC and AT was out of proportion. Interestingly, we identified 26 optimal codons in the G. duodenalis genome, ending with G or C. In addition, GC content, gene expression, and protein size also influence G. duodenalis CUB formation. This study systematically analyzes G. duodenalis codon usage pattern and clarifies the mechanisms of G. duodenalis CUB. These results will be very useful to identify new genes, molecular genetic manipulation, and study of G. duodenalis evolution.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56642 ◽  
Author(s):  
Ilya S. Belalov ◽  
Alexander N. Lukashev

mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Wenqi Ran ◽  
David M. Kristensen ◽  
Eugene V. Koonin

ABSTRACT The relationship between the selection affecting codon usage and selection on protein sequences of orthologous genes in diverse groups of bacteria and archaea was examined by using the Alignable Tight Genome Clusters database of prokaryote genomes. The codon usage bias is generally low, with 57.5% of the gene-specific optimal codon frequencies (F opt ) being below 0.55. This apparent weak selection on codon usage contrasts with the strong purifying selection on amino acid sequences, with 65.8% of the gene-specific dN/dS ratios being below 0.1. For most of the genomes compared, a limited but statistically significant negative correlation between F opt and dN/dS was observed, which is indicative of a link between selection on protein sequence and selection on codon usage. The strength of the coupling between the protein level selection and codon usage bias showed a strong positive correlation with the genomic GC content. Combined with previous observations on the selection for GC-rich codons in bacteria and archaea with GC-rich genomes, these findings suggest that selection for translational fine-tuning could be an important factor in microbial evolution that drives the evolution of genome GC content away from mutational equilibrium. This type of selection is particularly pronounced in slowly evolving, “high-status” genes. A significantly stronger link between the two aspects of selection is observed in free-living bacteria than in parasitic bacteria and in genes encoding metabolic enzymes and transporters than in informational genes. These differences might reflect the special importance of translational fine-tuning for the adaptability of gene expression to environmental changes. The results of this work establish the coupling between protein level selection and selection for translational optimization as a distinct and potentially important factor in microbial evolution. IMPORTANCE Selection affects the evolution of microbial genomes at many levels, including both the structure of proteins and the regulation of their production. Here we demonstrate the coupling between the selection on protein sequences and the optimization of codon usage in a broad range of bacteria and archaea. The strength of this coupling varies over a wide range and strongly and positively correlates with the genomic GC content. The cause(s) of the evolution of high GC content is a long-standing open question, given the universal mutational bias toward AT. We propose that optimization of codon usage could be one of the key factors that determine the evolution of GC-rich genomes. This work establishes the coupling between selection at the level of protein sequence and at the level of codon choice optimization as a distinct aspect of genome evolution.


Sign in / Sign up

Export Citation Format

Share Document