scholarly journals Analysis of Synonymous Codon Usage Bias in Flaviviridae Virus

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Huipeng Yao ◽  
Mengyu Chen ◽  
Zizhong Tang

Background. Flaviviridae viruses are single-stranded, positive-sense RNA viruses, which threat human constantly mediated by mosquitoes, ticks, and sandflies. Considering the recent increase in the prevalence of the family virus and its risk potential, we investigated the codon usage pattern to understand its evolutionary processes and provide some useful data to develop the medications for most of Flaviviridae viruses. Results. The overall extent of codon usage bias in 65 Flaviviridae viruses is low with the average value of GC contents being 50.5% and the highest value being 55.9%; the lowest value is 40.2%. ENC values of Flaviviridae virus genes vary from 48.75 to 57.83 with a mean value of 55.56. U- and A-ended codons are preferred in the Flaviviridae virus. Correlation analysis shows that the positive correlation between ENC value and GC content at the third nucleotide positions was significant in this family virus. The result of analysis of ENC, neutrality plot analysis, and correlation analysis revealed that codon usage bias of all the viruses was affected mainly by natural selection. Meanwhile, according to correspondence analysis (CoA) based on RSCU and phylogenetic analysis, the Flaviviridae viruses mainly are made up of two groups, Group I (Yellow fever virus, Apoi virus, Tembusu virus, Dengue virus 1, and others) and Group II (West Nile virus lineage 2, Japanese encephalitis virus, Usutu virus, Kedougou virus, and others). Conclusions. All in, the bias of codon usage pattern is affected not only by compositional constraints but also by natural selection. Phylogenetic analysis also illustrates that codon usage bias of virus can serve as an effective means of evolutionary classification in Flaviviridae virus.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Li Gun ◽  
Ren Yumiao ◽  
Pan Haixian ◽  
Zhang Liang

Phenomenon of unequal use of synonymous codons in Mycobacterium tuberculosis is common. Codon usage bias not only plays an important regulatory role at the level of gene expression, but also helps in improving the accuracy and efficiency of translation. Meanwhile, codon usage pattern of Mycobacterium tuberculosis genome is important for interpreting evolutionary characteristics in species. In order to investigate the codon usage pattern of the Mycobacterium tuberculosis genome, 12 Mycobacterium tuberculosis genomes from different area are downloaded from the GeneBank. The correlations between G3, GC12, whole GC content, codon adaptation index, codon bias index, and so on of Mycobacterium tuberculosis genomes are calculated. The ENC-plot, relationship between A3/(A3+T3) and G3/(G3+C3), GC12 versus GC3 plot, and the RSCU of overall/separated genomes all show that the codon usage bias exists in all 12 Mycobacterium tuberculosis genomes. Lastly, relationship between CBI and the equalization of ENC shows a strong negative correlation between them. The relationship between protein length and GC content (GC3 and GC12) shows that more obvious differences in the GC content may be in shorter protein. These results show that codon usage bias existing in the Mycobacterium tuberculosis genomes could be used for further study on their evolutionary phenomenon.


2021 ◽  
pp. 1450-1458
Author(s):  
Sharanagouda S. Patil ◽  
Uma Bharathi Indrabalan ◽  
Kuralayanapalya Puttahonnappa Suresh ◽  
Bibek Ranjan Shome

Background and Aim: Classical swine fever (CSF), caused by CSF virus (CSFV), is a highly contagious disease in pigs causing 100% mortality in susceptible adult pigs and piglets. High mortality rate in pigs causes huge economic loss to pig farmers. CSFV has a positive-sense RNA genome of 12.3 kb in length flanked by untranslated regions at 5' and 3' end. The genome codes for a large polyprotein of 3900 amino acids coding for 11 viral proteins. The 1300 codons in the polyprotein are coded by different combinations of three nucleotides which help the infectious agent to evolve itself and adapt to the host environment. This study performed and employed various methods/techniques to estimate the changes occurring in the process of CSFV evolution by analyzing the codon usage pattern. Materials and Methods: The evolution of viruses is widely studied by analyzing their nucleotides and coding regions/ codons using various methods. A total of 115 complete coding regions of CSFVs including one complete genome from our laboratory (MH734359) were included in this study and analysis was carried out using various methods in estimating codon usage bias and evolution. This study elaborates on the factors that influence the codon usage pattern. Results: The effective number of codons (ENC) and relative synonymous codon usage showed the presence of codon usage bias. The mononucleotide (A) has a higher frequency compared to the other mononucleotides (G, C, and T). The dinucleotides CG and CC are underrepresented and overrepresented. The codons CGT was underrepresented and AGG was overrepresented. The codon adaptation index value of 0.71 was obtained indicating that there is a similarity in the codon usage bias. The principal component analysis, ENC-plot, Neutrality plot, and Parity Rule 2 plot produced in this article indicate that the CSFV is influenced by the codon usage bias. The mutational pressure and natural selection are the important factors that influence the codon usage bias. Conclusion: The study provides useful information on the codon usage analysis of CSFV and may be utilized to understand the host adaptation to virus environment and its evolution. Further, such findings help in new gene discovery, design of primers/probes, design of transgenes, determination of the origin of species, prediction of gene expression level, and gene function of CSFV. To the best of our knowledge, this is the first study on codon usage bias involving such a large number of complete CSFVs including one sequence of CSFV from India.


Genomics ◽  
2020 ◽  
Vol 112 (4) ◽  
pp. 2695-2702 ◽  
Author(s):  
Xu-Yuan Liu ◽  
Yu Li ◽  
Kai-Kai Ji ◽  
Jie Zhu ◽  
Peng Ling ◽  
...  

2016 ◽  
Vol 91 (1) ◽  
pp. 72-79 ◽  
Author(s):  
G.A. Mazumder ◽  
A. Uddin ◽  
S. Chakraborty

AbstractSynonymous codons are used with different frequencies, a phenomenon known as codon bias, which exists in many genomes and is mainly resolute by mutation and selection. To elucidate the genetic characteristics and evolutionary relationship ofWucheraria bancroftiandSchistosoma haematobiumwe examined the pattern of synonymous codon usage in nuclear genes of both the species. The mean overall GC contents ofW. bancroftiandS. haematobiumwere 43.41 and 36.37%, respectively, which suggests that genes in both the species were AT rich. The value of the High Effective Number of Codons in both species suggests that codon usage bias was weak. Both species had a wide range of P3 distribution in the neutrality plot, with a significant correlation between P12 and P3. The codons were closer to the axes in correspondence analysis, suggesting that mutation pressure influenced the codon usage pattern in these species. We have identified the more frequently used codons in these species, most codons ending with an A or T. The nucleotides A/T and C/G were not proportionally used at the third position of codons, which reveals that natural selection might influence the codon usage patterns. The regression equation of P12 on P3 suggests that natural selection might have played a major role, while mutational pressure played a minor role in codon usage pattern in both species. These results form the basis of exploring the evolutionary mechanisms and the heterologous expression of medically important proteins ofW. bancroftiandS. haematobium.


2022 ◽  
Vol 43 (1) ◽  
pp. 123-132
Author(s):  
W. Ahmed ◽  
◽  
S. Gupta ◽  
I. Mukherjee ◽  
V.K. Babu ◽  
...  

Aim: The aim of the present study was to understand the molecular relationship between nematode (parasite) and fish (host) through codon usage bias (CUB) analysis. Methodology: The Codon usage bias analysis has been performed in fish Carassius gibelio (Prussian carp) and nematode fish parasite Anisakis simplex. The complete coding sequences (CDS) of C. gibelio (Prussian carp) and A. simplex (Nematode) were retrieved from National Center for Biotechnology Information and followed to that we have performed bioinformatics analysis to understand the codon usage pattern between host and parasite. Results: Different CUB indices like Relative synonymous codon usage (RSCU), Effective number of codons (ENC), Codon adaptation index (CAI) and Codon bias index (CBI) revealed a similar pattern in the codon usage in C. gibelio and A. simplex. In addition, inclusive analysis using different plots (ENC, parity, neutrality) had shown the influence of both the evolutionary forces i.e mutational and translational selection on codon usage pattern. This describes the role of evolutionary forces in determining the conserved genome to establish species-specific function-level differences for efficient survival. Interpretation: The present study elucidated the association between Carassiusgibelio (host) and Anisakis simplex (parasite) based on the similar pattern of codon usage bias between both the species.


2020 ◽  
Author(s):  
Wei Hou

Abstract The outbreak of viral pneumonia in China due to a novel coronavirus 2019-nCoV poses significant threats to international health. In this study we perform bioinformatic analysis to take a snapshot of the codon usage pattern of 2019-nCoV and uncover that this novel coronavirus has a relatively low codon usage bias. The information from this research may not only be helpful to get new insights into the evolution of 2019-nCoV, but also have potential value for developing coronavirus vaccines.


2011 ◽  
Vol 204-210 ◽  
pp. 649-662 ◽  
Author(s):  
Ying Wu ◽  
An Chun Cheng ◽  
Ming Shu Wang ◽  
De Kang Zhu ◽  
Xiao Yue Chen

The analysis of codon usage may improve our understanding of the evolution and pathogenesis of DEV(Duck enteritis virus) and allow reengineering of target gene to improve their expression for gene therapy.In this study,we calculated the codon usage bias in DEV UL55 gene and performed a comparative analysis of synonymous codon usage patterns in other 26 related viruses by EMBOSS CUSP program and Codon W on line.Moreover,statistical methods were used to investigate the correlations of these related parameters. By comparing synonymous codon usage patterns in different viruses,we observed that synonymous codon usage pattern in these virus is virus specific and phylogenetically conserved, with a strong bias towards the codons with A and T at the third codon position. Phylogenetic analysis based on codon usage pattern suggested that DEV UL55 gene was clustered with the avian Alphaherpesvirus but diverged to form a single branch. The Neutrality-plot suggested GC12 and GC3s adopt the same mutation pattern,meanwhile,the ENC-plot revealed that the genetic heterogeneity in UL55 genes is constrained by the G+C content, while translational selection and gene length have no or micro effect on the variations of synonymous codon usage in these virus genes.Furthermore, we compared the codon preferences of DEV with those of E. coli, yeast and Homo sapiens.Data suggested the eukaryotes system such as human system may be more suitable for the expression of DEV UL55 gene in vitro. If the yeast and E. coli expression system are wanted for the expression of DEV UL55 gene ,codon optimization of the DEV UL55 gene may be required.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fusheng Si ◽  
Li Jiang ◽  
Ruisong Yu ◽  
Wenqiang Wei ◽  
Zhen Li

Porcine epidemic diarrhea virus (PEDV), which classified in the genus Alphacoronavirus, family Coronaviridae, is one of the most important pathogens that cause heavy economic losses in pig industry. Although intensive mutation and recombination analysis of PEDV strains were provided, systematic genome analysis were needed to elucidate the evolution mechanism and codon usage adaptation profiles of the pathogen. Here, a comprehensive investigation was carried out to reveal the systematic evolutionary processes of synonymous codon usage and host-adapted evolution phenotype of PEDV genome. We found a low codon usage bias (CUB) in PEDV genome and that nucleotide compositions, natural selection, mutation pressure and geographical diversity shapes the codon usage patterns of PEDV, with natural selection dominated the overall codon usage bias in PEDV than the others. By using the relative codon deoptimization index (RCDI) and similarity index (SiD) analysis, we observed that genotype II PEDV strains showed the highest level of adaptation phenotype to Sus scrofa than another divergent clade. To the best of our knowledge, this is the first comprehensive report elaborating the codon usage and host adaptation of PEDV. The findings offer an insight into our understanding of factors involved in PEDV evolution, adaptation and fitness toward their hosts.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Youhua Chen

Codon usage bias patterns have been broadly explored for many viruses. However, the relative importance of mutation pressure and natural selection is still under debate. In the present study, I tried to resolve controversial issues on determining the principal factors of codon usage patterns for DNA and RNA viruses, respectively, by examining over 38000 ORFs. By utilizing variation partitioning technique, the results showed that 27% and 21% of total variation could be attributed to mutational pressure, while 5% and 6% of total variation could be explained by natural selection for DNA and RNA viruses, respectively, in codon usage patterns. Furthermore, the combined effect of mutational pressure and natural selection on influencing codon usage patterns of viruses is substantial (explaining 10% and 8% of total variation of codon usage patterns). With respect to GC variation, GC content is always negatively and significantly correlated with aromaticity. Interestingly, the signs for the significant correlations between GC, gene lengths, and hydrophobicity are completely opposite between DNA and RNA viruses, being positive for DNA viruses while being negative for RNA viruses. At last, GC12 versus G3s plot suggests that natural selection is more important than mutational pressure on influencing the GC content in the first and second codon positions.


Sign in / Sign up

Export Citation Format

Share Document