scholarly journals Balance Fatigue Design of Cast Steel Nodes in Tubular Steel Structures

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Libin Wang ◽  
Hui Jin ◽  
Haiwei Dong ◽  
Jing Li

Cast steel nodes are being increasingly popular in steel structure joint application as their advanced mechanical performances and flexible forms. This kind of joints improves the structural antifatigue capability observably and is expected to be widely used in the structures with fatigue loadings. Cast steel node joint consists of two parts: casting itself and the welds between the node and the steel member. The fatigue resistances of these two parts are very different; the experiment results showed very clearly that the fatigue behavior was governed by the welds in all tested configurations. This paper focuses on the balance fatigue design of these two parts in a cast steel node joint using fracture mechanics and FEM. The defects in castings are simulated by cracks conservatively. The final crack size is decided by the minimum of 90% of the wall thickness and the value deduced by fracture toughness. The allowable initial crack size could be obtained through the integral of Paris equation when the crack propagation life is considered equal to the weld fatigue life; therefore, the two parts in a cast steel node joint will have a balance fatigue life.

Author(s):  
Haigen Cheng ◽  
Cong Hu ◽  
Yong Jiang

AbstractThe steel structure under the action of alternating load for a long time is prone to fatigue failure and affects the safety of the engineering structure. For steel structures in complex environments such as corrosive media and fires, the remaining fatigue life is more difficult to predict theoretically. To this end, the article carried out fatigue tests on Q420qD high-performance steel cross joints under three different working conditions, established a 95% survival rate $$S{ - }N$$ S - N curves, and analyzed the effects of corrosive media and high fire temperatures on its fatigue performance. And refer to the current specifications to evaluate its fatigue performance. The results show that the fatigue performance of the cross joint connection is reduced under the influence of corrosive medium, and the fatigue performance of the cross joint connection is improved under the high temperature of fire. When the number of cycles is more than 200,000 times, the design curves of EN code, GBJ code, and GB code can better predict the fatigue life of cross joints without treatment, only corrosion treatment, and corrosion and fire treatment, and all have sufficient safety reserve.


1998 ◽  
Vol 120 (1) ◽  
pp. 10-19 ◽  
Author(s):  
C. M. Sonsino ◽  
R. Umbach

In a joint project of a German working group supported by the ECSC and the Studiengesellschaft fu¨r Stahlanwendung e.V., the fatigue behavior of large-scale hybrid tubular joints with inserts manufactured from the high-strength cast steel GS-12 MnMo 7 4 welded into tubular members formed from the fine-grained steel StE 500 were compared to the behavior of large-scale welded tubular joints. The latter were made from medium-strength fine-grained steel StE 355 and high-strength StE 690. In addition, data from hybrid joints with cast steel inserts of medium-strength GS-8 Mn 7 welded into StE 355 tubulars is available for comparison. The tests were carried out under variable amplitude loading in artificial seawater. The results were evaluated for the failure criteria fatigue life to crack initiation (a = 1 mm) and through crack. With medium-strength (Rp0.2 > 355 N/mm2) hybrid tubulars, where by the use of cast steel inserts the welds were removed into areas of lower stress concentration, fatigue lives higher than a factor of 100 were achieved compared to the welded nodes, even those made from StE 690. However, by the use of high-strength (Rp0.2 > 500 N/mm2) cast steel inserts and tubular members of corresponding strength, the fatigue life to crack initiation was improved by a factor of two despite a thickness reduction compared to the medium-strength design. Post-weld treatments of the welded tubulars without cast steel inserts like shot-peening, TIG-dressing, or their combination resulted only in a slight increase of fatigue life. The results of this investigation do not only show how to improve the fatigue life by a new design using cast steel inserts, but indicate also how to revise design codes from the point of damage calculation (damage sum of 0.50 for welded nodes and 0.25 for cast steel inserts instead of the conventional value of 1.00), as well as consideration of fatigue life to initiation of a technically detectable crack with a defined depth e.g., a = 1 mm.


Author(s):  
Inge Lotsberg

The last revision of the DNV recommended practice “Fatigue Analysis of Offshore Steel Structures” is from October 2001. During use of this standard some feed back from designers around the world have been received. Also some new research in the area has been performed in the time interval from it was first developed. It is also realised that the document is being used for fatigue design of some other types of details and structures than was thought of when the document was originally developed. Therefore it was now found convenient to revise the document to incorporate the experience gained and new research and developments made in the area of fatigue of offshore structures the last 7 years since the main content for this recommended practice was developed.


Author(s):  
Sebastian Cravero ◽  
Hugo Ernst

The fatigue failure in components is divided in two stages: an initiation stage that defines the number of cycles that it takes for a crack to appear in the material and a second stage that estimates the number of cycles where the crack grows until it becomes unstable. Usual fatigue life estimation procedures (in crack free components) only consider the initiation stage and assume that the crack propagation period is relatively small compared with the total life. However, in the case of severely notched geometries like threaded connections, the propagation stage can be an important part of the component fatigue life and must be evaluated. A fundamental issue in the calculation of initiation plus propagation fatigue life is the definition of the initial crack size after the initiation stage. In the present study techniques for crack initiation and crack growth are described. Also the procedure to combine the two techniques and define an initial crack size is presented. The study is based on previous work of C. Navarro, et al. [1]. Additionally, validation against experimental tests on notched specimens is provided.


2002 ◽  
Vol 124 (5) ◽  
pp. 512-520 ◽  
Author(s):  
A. M. Makiyama ◽  
S. Vajjhala ◽  
L. J. Gibson

Both creep and crack growth contribute to the reduction in modulus associated with fatigue loading in bone. Here we simulate crack growth and subsequent strut failure in fatigue in an open-cell, three-dimensional Voronoi structure which is similar to that of low density, osteoporotic bone. The model indicates that sequential failure of struts leads to a precipitous drop in modulus: the failure of 1% of the struts leads to about a 10% decrease in modulus. A parametric study is performed to assess the influence of normalized stress range, relative density, initial crack size, crack shape and cell geometry on the fatigue life. The fatigue life is most sensitive to the relative density and the initial crack length. The results lead to a quantitative expression for the fatigue life associated with crack growth. Data for the fatigue life of trabecular bone are compared with the crack growth model described in this paper, as well as with a previous model for creep of a three-dimensional Voronoi structure. In our models, creep dominates the fatigue behavior in low cycle fatigue while crack growth dominates in high cycle fatigue, consistent with previous observations on cortical bone. The large scatter in the trabecular bone fatigue data make it impossible to identify a transition between creep dominated fatigue and crack growth dominated fatigue. The parametric study of the crack growth model indicates that variations in relative density among specimens, initial crack size within trabeculae and crack shape could easily produce such variability in the test results.


2017 ◽  
Vol 906 ◽  
pp. 26-31 ◽  
Author(s):  
Sergey V. Konovalov ◽  
D.A. Kosinov ◽  
I.A. Komissarova ◽  
V.E. Gromov

The tests were carried out to identify the influence of electropulse treatment on austenite steel ((mass %) 0.44С, 16.50Mn, 0.26Cr, 0.08Ni, 0.34Si, 2.74Al, 0.002S, 0.017P, Fe – balance). The fa-tigue life is reported to increase by 1.8 times. Electron microscopic research into the dislocation structure of the steel was conducted under diverse fatigue conditions with the purpose to give rea-sons for the identified effect. The dislocation chaos substructure, reticular and fragmented dislocation substructures were found in the steel in the initial state. Fatiguing leads to the change in the dis-location substructure parameters. The subsequent electropulse treatment furthers transformation of the grain structure since grains arise and grow due to evolving local dynamic recrystallization and partial transformation of the dislocation substructure and occurrence of a great number of microtwins. The increase in the fatigue life is associated with the mentioned above transformations resulting from electropulse treatment of the steel structural state.


2017 ◽  
Vol 883 ◽  
pp. 87-91
Author(s):  
Adisak Aumpiem ◽  
Asa Prateepasen

Cast steel nodes are being increasingly popular in steel structure joint application. Cast steel node joint consists of two parts: casting itself and the welds between the node and the steel member. The fatigue resistances of these two parts are very different. This paper presents a using of the MSF (Main Structure Farm) casting nodes S420 instead of carbon steel plate by considering the Crack Tip Opening Displacement (CTOD) value and the percentage of coarse grain. The sampling work piece from the weld and heat affected zone (HAZ) were tested and compared the CTOD value and mechanical properties to the standard. This result shows that the CTOD values are under allowable value. After that, a finite element (FEM) program was corporately used to simulate. It is acceptable cast node even the CTOD is undesirable. The benefit of the paper is to show the procedure to prove cast steel nodes by using CTOD.


2020 ◽  
Vol 10 (10) ◽  
pp. 3379 ◽  
Author(s):  
Enrico Armentani ◽  
Alessandro Greco ◽  
Alessandro De Luca ◽  
Raffaele Sepe

This research deals with the fatigue behavior of 200 small single lap multiple-riveted joint specimens, widely used for aeronautic structures. The tests were performed with three different levels of stress with stress ratio R = 0.05; three levels were set: 90 MPa, 120 MPa and 160 MPa. The fatigue life and critical crack size for all tested specimens were analyzed. According to the results’ analysis, two types of fracture, through-hole and in proximity of the hole, were observed, depending on the level of stress: the higher the applied stress, the more through-hole cracking. Indeed, under the fatigue load with a stress level of 90 MPa, less than 30% of specimens showed cracks propagating through the hole, while, at the stress level of 120 MPa, the percentage reaches 36.3%. At the stress level of 160 MPa, 100% of specimens failed through the hole. Moreover, aimed to use experimental data for probabilistic methods, a statistical analysis was performed according to the Anderson–Darling test. This method allowed the analysis of the datasets, in terms of both fatigue life and critical crack size, providing information about the best distribution function able to fit experimental results.


2017 ◽  
Vol 27 (7) ◽  
pp. 1084-1104 ◽  
Author(s):  
Xiaoqiang Zhang ◽  
Huiying Gao ◽  
Hong-Zhong Huang

When the linear elastic fracture mechanics-based approaches are used to predict the fatigue life of welded joints, initial crack size is a key point, which eventually affects the accuracy of total fatigue life prediction. Meanwhile, the life prediction process under random loading is complicated. In this paper, a novel method is proposed to determine the initial crack size, which is based on the results of back-extrapolation approach. The proposed method expresses the stress intensity factor, and the boundary between crack initiation and propagation period is taken into consideration. Based on the proposed method, deterministic total fatigue life can be obtained with fewer tests and less cost. In addition, the concept of equivalent crack size and its calculation model are proposed to reduce the complexity of the calculation process of fatigue life prediction under random loading, and model uncertainty is included into the prediction model of probabilistic fatigue life based on equivalent crack size. It is feasible, which has been verified, to take the influence of stress level into account when determining the initial crack size. Meanwhile, the proposal of equivalent crack size simplifies the calculation process of probabilistic fatigue life, and the consideration of model uncertainty is more conducive to assess the safety and reliability of the materials or structures.


Sign in / Sign up

Export Citation Format

Share Document