scholarly journals Design of an Attitude and Heading Reference System Based on Distributed Filtering for Small UAV

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Long Zhao ◽  
Qing Yun Wang

A development procedure for a low-cost attitude and heading reference system (AHRS) based on the distributed filter has been proposed. The AHRS consists of three single-axis accelerometers, three single-axis gyroscopes, and one 3-axis digital compass. The initial attitude estimation is readily accomplished by using the complementary filtering. The attitude estimation for UAV flying in the real time is realized by using the three low orders EKF. The validation results show that the estimated orientations of the developed AHRS are within the acceptable region, and AHRS can give a stabilized attitude and heading information for a long time.

2013 ◽  
Vol 756-759 ◽  
pp. 518-522
Author(s):  
Qing Hui Wang ◽  
Dan Li ◽  
Lei Chang ◽  
Wen Zhou Wang

A method of low cost strapdown inertial Attitude and Heading Reference System based on MEMS is implemented in this paper. Based on the analysis of the modules, the proper selection of the core processor and the inertial devices, the hardware components of the system is presented; Using the gradient-descent algorithm which is based on quaternion, it can finish the calculation of the attitude; This AHRS can realize the real-time extraction, calculation and the output of the information.


2013 ◽  
Vol 321-324 ◽  
pp. 528-531
Author(s):  
Jing Ran Wu ◽  
Zhen Guo Sun ◽  
Qi Dong Ma ◽  
Wen Zeng Zhang

An embedded attitude estimation system is developed for the autonomous flight of Quad-Rotor UAVs. The system hardware is composed of a DSP processor and low-cost MEMS sensors including a 3-axis gyroscope and a 3-axis accelerometer. A Complementary Filter fused the advantages of the gyroscope and accelerometer is designed and embedded on the DSP processor to estimate the real-time attitude. Ground testing experiments show that the system could meet the accuracy and robustness requirements for the Quad-Rotor UAVs attitude estimation.


Sensors ◽  
2013 ◽  
Vol 13 (11) ◽  
pp. 15138-15158 ◽  
Author(s):  
José Guerrero-Castellanos ◽  
Heberto Madrigal-Sastre ◽  
Sylvain Durand ◽  
Lizeth Torres ◽  
German Muñoz-Hernández

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4999
Author(s):  
Xuejun Zheng ◽  
Shaorong Wang ◽  
Xin Su ◽  
Mengmeng Xiao ◽  
Zia Ullah ◽  
...  

The investigation of real-time dynamic behavior evaluation in the active distribution networks (ADNs) is a challenging task, and it has great importance due to the emerging trend of distributed generations, electric vehicles, and flexible loads integration. The advent of new elements influences the dynamic behavior of the electric distribution networks and increases the assessment complexity. However, the proper implementation of low-cost phasor measurement units (PMUs) together with the development of power system applications offer tremendous benefits. Therefore, this paper proposes a PMU-based multi-dimensional dynamic index approach for real-time dynamic behavior evaluation of ADNs. The proposed evaluation model follows the assessment principles of accuracy, integrity, practicability, and adaptability. Additionally, we introduced low-cost PMUs in the assessment model and implemented them for real-time and high-precision monitoring of dynamic behaviors in the entire distribution network. Finally, a complete model called the real-time dynamic characteristics evaluation system is presented and applied to the ADN. It is pertinent to mention that our proposed evaluation methodology does not rely on the network topology or line parameters of the distribution network since only the phasor measurements of node voltage and line current are involved in the dynamic index system. Thus, the presented methodology is well adaptive to different operation states of ADN despite frequent topology changes. The validation of the proposed approach was verified by conducting simulations on the modified IEEE 123-node distribution network. The obtained results verify the effectiveness and relevance of the proposed model for the real-time dynamic behavior evaluation of ADNs.


2014 ◽  
pp. 68-73
Author(s):  
Wael M. El-Medany

This paper presents the design and VLSI hardware implementation of a remote sensing system for humidity and temperature in real time. The remote monitoring of the system based on a web design by using GPRS (General Packet Radio Service) network. Since full custom ASIC design takes long time with high cost, programmable logic devices as a programmable ASIC is a better choice for rapid design process and reasonable prices. The design has been described using VHDL (VHSIC Hardware Description Language), and then implemented in hardware using CoolRunner2 CPLD from Xilinx to achieve low cost with rapid prototyping. The design has been simulated and synthesized using Xilinx ISE 6.2i software tools, then test in hardware level using Digilent Spartan 3 starter kit as a hardware tools. The design offers a complete, low cost, powerful and user friendly way of 24 hours real time monitoring system.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012009
Author(s):  
Ning Zhang ◽  
Yinxin Yan ◽  
Houcheng Yang ◽  
Zhangsi Yu

Abstract This paper presents a sliding wire detection system of electric screw locking tool based on the characteristics of motor. The system can judge whether the screw has sliding wire through the current change of motor during normal operation, and realize the real-time detection and alarm of sliding wire. The system has the advantages of high sensitivity, low cost and high accuracy. It can be widely used in automatic assembly and other fields.


2017 ◽  
Vol 17 (02) ◽  
pp. e20 ◽  
Author(s):  
Kevin E. Soulier ◽  
Matías Nicolás Selzer ◽  
Martín Leonardo Larrea

In recent years, Augmented Reality has become a very popular topic, both as a research and commercial field. This trend has originated with the use of mobile devices as computational core and display. The appearance of virtual objects and their interaction with the real world is a key element in the success of an Augmented Reality software. A common issue in this type of software is the visual inconsistency between the virtual and real objects due to wrong illumination. Although illumination is a common research topic in Computer Graphics, few studies have been made about real time estimation of illumination direction. In this work we present a low-cost approach to detect the direction of the environment illumination, allowing the illumination of virtual objects according to the real light of the ambient, improving the integration of the scene. Our solution is open-source, based on Arduino hardware and the presented system was developed on Android.


Sensors ◽  
2016 ◽  
Vol 16 (4) ◽  
pp. 501 ◽  
Author(s):  
Liuzheng Ma ◽  
Ling Wang ◽  
Ruipeng Chen ◽  
Keke Chang ◽  
Shun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document