scholarly journals A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Fat-Moon Suk ◽  
Gi-Shih Lien ◽  
Wei-Jan Huang ◽  
Chia-Nan Chen ◽  
Shao-Yu Lu ◽  
...  

Activating transcription factor-(ATF-) 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002) is a Taiwanese propolin G (PPG) derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cellsin vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP). GS-002 also induced endoplasmic reticular (ER) stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153), phosphorylated eukaryotic initiation factor 2α(eIF2α), phosphorylated protein endoplasmic-reticular-resident kinase (PERK), and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK) signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

Author(s):  
Li Wu ◽  
Yuncheng Lv ◽  
Ying Lv ◽  
Sunmin Xiang ◽  
Zhibo Zhao ◽  
...  

Abstract Excessive accumulation of cholesterol in β cells initiates endoplasmic reticulum (ER) stress and associated apoptosis. We have reported that excessive uptake of cholesterol by MIN6 cells decreases the expression of secretagogin (SCGN) and then attenuates insulin secretion. Here, we aimed to determine whether cholesterol-induced SCGN decrease is involved in the modulation of ER stress and apoptosis in pancreatic β cells. In this study, MIN6 cells were treated with oxidized low-density lipoprotein (ox-LDL) for 24 h, and then intracellular lipid droplets and cell apoptosis were quantified, and SCGN and ER stress markers were identified by western blot analysis. Furthermore, small interfer RNA (siRNA)-mediated SCGN knockdown and recombinant plasmid-mediated SCGN restoration experiments were performed to confirm the role of SCGN in ER stress and associated cell apoptosis. Finally, the interaction of SCGN with ATF4 was computationally predicted and then validated by a co-immunoprecipitation assay. We found that ox-LDL treatment increased the levels of ER stress markers, such as phosphorylated protein kinase-like endoplasmic reticulum kinase, phosphorylated eukaryotic initiation factor 2 alpha, activating transcription factor 4 (ATF4), and transcription factor CCAAT-enhancer-binding protein homologous protein, and promoted MIN6 cell apoptosis; in addition, the expression of SCGN was downregulated. siRNA-mediated SCGN knockdown exacerbated β-cell ER stress by increasing ATF4 expression. Pretreatment of MIN6 cells with the recombinant SCGN partly antagonized ox-LDL-induced ER stress and apoptosis. Furthermore, a co-immunoprecipitation assay revealed an interaction between SCGN and ATF4 in MIN6 cells. Taken together, these results demonstrated that pancreatic β-cell apoptosis induced by ox-LDL treatment can be attributed, in part, to an SCGN/ATF4-dependent ER stress response.


Author(s):  
Hung-Wei Kan ◽  
Chin-Hong Chang ◽  
Ying-Shuang Chang ◽  
Yi-Ting Ko ◽  
Yu-Lin Hsieh

AbstractWe investigated the mediating roles of activating transcription factor 3 (ATF3), an injury marker, or C-type lectin member 5A (CLEC5A), an inflammatory response molecule, in the induction of endoplasmic reticulum (ER) stress and neuroinflammation in diabetic peripheral neuropathy in ATF3 and CLEC5A genetic knockout (aft3−/− and clec5a−/−, respectively) mice. ATF3 was expressed intranuclearly and was upregulated in mice with diabetic peripheral neuropathy (DN) and clec5a−/− mice. The DN and clec5a−/− groups also exhibited neuropathic behavior, but not in the aft3−/− group. The upregulation profiles of cytoplasmic polyadenylation element-binding protein, a protein translation–regulating molecule, and the ER stress-related molecules of inositol-requiring enzyme 1α and phosphorylated eukaryotic initiation factor 2α in the DN and clec5a−/− groups were correlated with neuropathic behavior. Ultrastructural evidence confirmed ER stress induction and neuroinflammation, including microglial enlargement and proinflammatory cytokine release, in the DN and clec5a−/− mice. By contrast, the induction of ER stress and neuroinflammation did not occur in the aft3−/− mice. Furthermore, the mRNA of reactive oxygen species–removing enzymes such as superoxide dismutase, heme oxygenase-1, and catalase were downregulated in the DN and clec5a−/− groups but were not changed in the aft3−/− group. Taken together, the results indicate that intraneuronal ATF3, but not CLEC5A, mediates the induction of ER stress and neuroinflammation associated with diabetic neuropathy.


2002 ◽  
Vol 366 (3) ◽  
pp. 787-795 ◽  
Author(s):  
Shengzhan LUO ◽  
Amy S. LEE

Malfolded protein formation and perturbance of calcium homoeostasis results in the induction of the endoplasmic reticulum (ER) chaperone protein, namely the 78kDa glucose-regulated protein (GRP78)/immunoglobulin heavy-chain binding protein. Various ER stress inducers can activate grp78, but signal transduction mechanisms are not well understood. We report in the present study that the induction of endogenous grp78 mRNA by the amino acid analogue azetidine (AzC) requires the integrity of a signal transduction pathway mediated by p38 mitogen-activated protein kinase (p38 MAPK). In contrast, induction of grp78 by thapsigargin that depletes the ER calcium storage can occur even when the p38 MAPK pathway is blocked. Treatment of cells with AzC results in the sustained activation of p38 MAPK. We identified an ER transmembrane activating transcription factor 6 (ATF6) as a target of p38 MAPK phosphorylation in AzC-treated cells. ATF6 undergoes proteolytic cleavage on AzC treatment, releasing a nuclear form that is an activator of the grp78 promoter. We show here that constitutively active mitogen-activated protein kinase kinase 6, a selective p38 MAPK activator, enhances the ability of the nuclear form of ATF6 to transactivate the grp78 promoter. Our results provide direct evidence that different ER stress inducers use diverse pathways to activate grp78 and that in addition to activation by proteolytic cleavage, ATF6 undergoes specific ER stress-induced phosphorylation. We propose that phosphorylation of ATF6 is a novel mechanism for augmenting its potential as a transcription activator.


2021 ◽  
pp. 096032712110036
Author(s):  
MC Üstüner ◽  
C Tanrikut ◽  
D Üstüner ◽  
UK Kolaç ◽  
Z Özdemir Köroğlu ◽  
...  

Carbon tetrachloride (CCl4) is a toxic chemical that causes liver injury. CCl4 triggers endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR triggers autophagy to deal with the damage. The aim of this study was to investigate the effect of baicalein, derived from Scutellaria baicalensis, on CCl4-induced liver damage concerning ER stress and autophagy. Two groups of Wistar albino rats (n = 7/groups) were treated with 0.2 ml/kg CCl4 for 10 days with and without baicalein. Histological and transmission electron microscopy (TEM) analysis, autophagy, and ER stress markers measurements were carried out to evaluate the effect of baicalein. Histological examinations showed that baicalein reduced liver damage. TEM analysis indicated that baicalein inhibited ER stress and triggered autophagy. CCl4-induced elevation of C/EBP homologous protein (CHOP), glucose-regulating protein 78 (GRP78), activating transcription factor 4 (ATF4), activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK), and active/spliced form of X-box-binding protein 1 (XBP1s) ER stress markers were decreased by baicalein. Baicalein also increased the autophagy-related 5 (ATG5), Beclin1, and Microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine-conjugated form (LC3-II) autophagy marker levels. In conclusion, baicalein reduced the CCl4-induced liver damage by inhibiting ER stress and the trigger of autophagy.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1343
Author(s):  
Balaji Venkataraman ◽  
Saeeda Almarzooqi ◽  
Vishnu Raj ◽  
Abdullah T. Alhassani ◽  
Ahmad S. Alhassani ◽  
...  

Inflammatory bowel diseases (IBD) are chronic inflammatory disorders with increasing incidence and prevalence worldwide. Here, we investigated thymoquinone (TQ), a naturally occurring phytochemical present in Nigella sativa, for anti-inflammatory effects in colonic inflammation. To address this, we used in vivo (mice) and in vitro (HT-29 cells) models in this investigation. Our results showed that TQ treatment significantly reduced the disease activity index (DAI), myeloperoxidase (MPO) activity, and protected colon microscopic architecture. In addition, TQ also reduced the expression of proinflammatory cytokines and mediators at both the mRNA and protein levels. Further, TQ decreased phosphorylation of the activated mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) proteins and enhanced colon epithelial PPAR-γ transcription factor expression. TQ significantly decreased proinflammatory chemokines (CXCL-1 and IL-8), and mediator (COX-2) mRNA expression in HT-29 cells treated with TNF-α. TQ also increased HT-29 PPAR-γ mRNA, PPAR-γ protein expression, and PPAR-γ promoter activity. These results indicate that TQ inhibits MAPK and NF-κB signaling pathways and transcriptionally regulates PPAR-γ expression to induce potent anti-inflammatory activity in vivo and in vitro models of colon inflammation.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 555
Author(s):  
Soyoung Hur ◽  
Eungyeong Jang ◽  
Jang-Hoon Lee

Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds—kaempferol and quercetin—against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.


2004 ◽  
Vol 24 (17) ◽  
pp. 7469-7482 ◽  
Author(s):  
Jaime D. Blais ◽  
Vasilisa Filipenko ◽  
Meixia Bi ◽  
Heather P. Harding ◽  
David Ron ◽  
...  

ABSTRACT Hypoxic stress results in a rapid and sustained inhibition of protein synthesis that is at least partially mediated by eukaryotic initiation factor 2α (eIF2α) phosphorylation by the endoplasmic reticulum (ER) kinase PERK. Here we show through microarray analysis of polysome-bound RNA in aerobic and hypoxic HeLa cells that a subset of transcripts are preferentially translated during hypoxia, including activating transcription factor 4 (ATF4), an important mediator of the unfolded protein response. Changes in mRNA translation during the unfolded protein response are mediated by PERK phosphorylation of the translation initiation factor eIF2α at Ser-51. Similarly, PERK is activated and is responsible for translational regulation under hypoxic conditions, while inducing the translation of ATF4. The overexpression of a C-terminal fragment of GADD34 that constitutively dephosphorylates eIF2α was able to attenuate the phosphorylation of eIF2α and severely inhibit the induction of ATF4 in response to hypoxic stress. These studies demonstrate the essential role of ATF4 in the response to hypoxic stress, define the pathway for its induction, and reveal that GADD34, a target of ATF4 activation, negatively regulates the eIF2α-mediated inhibition of translation. Taken with the concomitant induction of additional ER-resident proteins identified by our microarray analysis, this study suggests an important integrated response between ER signaling and the cellular adaptation to hypoxic stress.


2021 ◽  
Vol 22 (16) ◽  
pp. 8890
Author(s):  
Hiroto Yasuda ◽  
Miruto Tanaka ◽  
Anri Nishinaka ◽  
Shinsuke Nakamura ◽  
Masamitsu Shimazawa ◽  
...  

Neovascular age-related macular degeneration (nAMD) featuring choroidal neovascularization (CNV) is the principal cause of irreversible blindness in elderly people in the world. Integrated stress response (ISR) is one of the intracellular signals to be adapted to various stress conditions including endoplasmic reticulum (ER) stress. ISR signaling results in the upregulation of activating transcription factor 4 (ATF4), which is a mediator of ISR. Although recent studies have suggested ISR contributes to the progression of some age-related disorders, the effects of ATF4 on the development of CNV remain unclear. Here, we performed a murine model of laser-induced CNV and found that ATF4 was highly expressed in endothelial cells of the blood vessels of the CNV lesion site. Exposure to integrated stress inhibitor (ISRIB) reduced CNV formation, vascular leakage, and the upregulation of vascular endothelial growth factor (VEGF) in retinal pigment epithelium (RPE)-choroid-sclera complex. In human retinal microvascular endothelial cells (HRMECs), ISRIB reduced the level of ATF4 and VEGF induced by an ER stress inducer, thapsigargin, and recombinant human VEGF. Moreover, ISRIB decreased the VEGF-induced cell proliferation and migration of HRMECs. Collectively, our findings showed that pro-angiogenic effects of ATF4 in endothelial cells may be a potentially therapeutic target for patients with nAMD.


Sign in / Sign up

Export Citation Format

Share Document