The effect of baicalein on endoplasmic reticulum stress and autophagy on liver damage

2021 ◽  
pp. 096032712110036
Author(s):  
MC Üstüner ◽  
C Tanrikut ◽  
D Üstüner ◽  
UK Kolaç ◽  
Z Özdemir Köroğlu ◽  
...  

Carbon tetrachloride (CCl4) is a toxic chemical that causes liver injury. CCl4 triggers endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR triggers autophagy to deal with the damage. The aim of this study was to investigate the effect of baicalein, derived from Scutellaria baicalensis, on CCl4-induced liver damage concerning ER stress and autophagy. Two groups of Wistar albino rats (n = 7/groups) were treated with 0.2 ml/kg CCl4 for 10 days with and without baicalein. Histological and transmission electron microscopy (TEM) analysis, autophagy, and ER stress markers measurements were carried out to evaluate the effect of baicalein. Histological examinations showed that baicalein reduced liver damage. TEM analysis indicated that baicalein inhibited ER stress and triggered autophagy. CCl4-induced elevation of C/EBP homologous protein (CHOP), glucose-regulating protein 78 (GRP78), activating transcription factor 4 (ATF4), activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK), and active/spliced form of X-box-binding protein 1 (XBP1s) ER stress markers were decreased by baicalein. Baicalein also increased the autophagy-related 5 (ATG5), Beclin1, and Microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine-conjugated form (LC3-II) autophagy marker levels. In conclusion, baicalein reduced the CCl4-induced liver damage by inhibiting ER stress and the trigger of autophagy.

2021 ◽  
Vol 22 (16) ◽  
pp. 8890
Author(s):  
Hiroto Yasuda ◽  
Miruto Tanaka ◽  
Anri Nishinaka ◽  
Shinsuke Nakamura ◽  
Masamitsu Shimazawa ◽  
...  

Neovascular age-related macular degeneration (nAMD) featuring choroidal neovascularization (CNV) is the principal cause of irreversible blindness in elderly people in the world. Integrated stress response (ISR) is one of the intracellular signals to be adapted to various stress conditions including endoplasmic reticulum (ER) stress. ISR signaling results in the upregulation of activating transcription factor 4 (ATF4), which is a mediator of ISR. Although recent studies have suggested ISR contributes to the progression of some age-related disorders, the effects of ATF4 on the development of CNV remain unclear. Here, we performed a murine model of laser-induced CNV and found that ATF4 was highly expressed in endothelial cells of the blood vessels of the CNV lesion site. Exposure to integrated stress inhibitor (ISRIB) reduced CNV formation, vascular leakage, and the upregulation of vascular endothelial growth factor (VEGF) in retinal pigment epithelium (RPE)-choroid-sclera complex. In human retinal microvascular endothelial cells (HRMECs), ISRIB reduced the level of ATF4 and VEGF induced by an ER stress inducer, thapsigargin, and recombinant human VEGF. Moreover, ISRIB decreased the VEGF-induced cell proliferation and migration of HRMECs. Collectively, our findings showed that pro-angiogenic effects of ATF4 in endothelial cells may be a potentially therapeutic target for patients with nAMD.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Yu-ping Zhu ◽  
Ze Zheng ◽  
Shaofan Hu ◽  
Xufang Ru ◽  
Zhuo Fan ◽  
...  

The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1α-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1α−/− cells. By contrast, Nrf2−/−ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1α−/− and Nrf2−/−ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1α (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1α is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone or plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1α−/− cells, but rather are, to our surprise, decreased in Nrf2−/−ΔTA cells.


2020 ◽  
Vol 32 (14) ◽  
pp. 1169
Author(s):  
Arpitha Rao ◽  
Aparna Satheesh ◽  
Guruprasad Nayak ◽  
Pooja Suresh Poojary ◽  
Sandhya Kumari ◽  
...  

The present study was designed to investigate the effect of diet-induced obesity on endoplasmic reticulum (ER) stress in oocytes. Swiss albino mice (3 weeks old) were fed with a high-fat diet (HFD) for 8 weeks. Oocytes were assessed for lipid droplet accumulation, oxidative stress, ER stress and their developmental potential invitro. High lipid accumulation (P<0.01) and elevated intracellular levels of reactive oxygen species were observed in both germinal vesicle and MII oocytes of HFD-fed mice (P<0.05 and P<0.01 respectively compared with control). Further, expression of the ER stress markers X-box binding protein 1 (XBP1), glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4) and activating transcription factor 6 (ATF6) was significantly (P<0.001) higher in oocytes of the HFD than control group. Oocytes from HFD-fed mice exhibited poor fertilisation and blastocyst rates, a decrease in total cell number and high levels of DNA damage (P<0.01) compared with controls. In conclusion, diet-induced obesity resulted in elevated lipid levels and higher oxidative and ER stress in oocytes, which contributed to the compromised developmental potential of embryos.


2011 ◽  
Vol 435 (2) ◽  
pp. 431-439 ◽  
Author(s):  
Hyun Kook Cho ◽  
Kyu Jin Cheong ◽  
Hye Young Kim ◽  
JaeHun Cheong

Chronic hepatitis B is a disease of the liver that can progress to cirrhosis and liver cancer. The HBx (hepatitis B virus X) protein of hepatitis B virus is a multifunctional regulator that induces ER (endoplasmic reticulum) stress by previously unknown mechanisms. ER stress plays a critical role in inflammatory induction and COX2 (cyclo-oxygenase 2) is an important mediator of this inflammation. In the present study, we demonstrate the molecular mechanisms of HBx on induction of ER stress and COX2 expression. In addition, HBx reduced expression of enzymes which are involved in mitochondrial β-oxidation of fatty acids and the mitochondrial inner membrane potential. The reduction in intracellular ATP levels by HBx induced the unfolded protein response and COX2 expression through the eIF2α (eukaryotic initiation factor 2α)/ATF4 (activating transcription factor 4) pathway. We confirmed that ATF4 binding to the COX2 promoter plays a critical role in HBx-mediated COX2 induction. The results of the present study suggest that HBV infection contributes to induction of hepatic inflammation through dysfunction of cellular organelles including the ER and mitochondria.


Author(s):  
Li Wu ◽  
Yuncheng Lv ◽  
Ying Lv ◽  
Sunmin Xiang ◽  
Zhibo Zhao ◽  
...  

Abstract Excessive accumulation of cholesterol in β cells initiates endoplasmic reticulum (ER) stress and associated apoptosis. We have reported that excessive uptake of cholesterol by MIN6 cells decreases the expression of secretagogin (SCGN) and then attenuates insulin secretion. Here, we aimed to determine whether cholesterol-induced SCGN decrease is involved in the modulation of ER stress and apoptosis in pancreatic β cells. In this study, MIN6 cells were treated with oxidized low-density lipoprotein (ox-LDL) for 24 h, and then intracellular lipid droplets and cell apoptosis were quantified, and SCGN and ER stress markers were identified by western blot analysis. Furthermore, small interfer RNA (siRNA)-mediated SCGN knockdown and recombinant plasmid-mediated SCGN restoration experiments were performed to confirm the role of SCGN in ER stress and associated cell apoptosis. Finally, the interaction of SCGN with ATF4 was computationally predicted and then validated by a co-immunoprecipitation assay. We found that ox-LDL treatment increased the levels of ER stress markers, such as phosphorylated protein kinase-like endoplasmic reticulum kinase, phosphorylated eukaryotic initiation factor 2 alpha, activating transcription factor 4 (ATF4), and transcription factor CCAAT-enhancer-binding protein homologous protein, and promoted MIN6 cell apoptosis; in addition, the expression of SCGN was downregulated. siRNA-mediated SCGN knockdown exacerbated β-cell ER stress by increasing ATF4 expression. Pretreatment of MIN6 cells with the recombinant SCGN partly antagonized ox-LDL-induced ER stress and apoptosis. Furthermore, a co-immunoprecipitation assay revealed an interaction between SCGN and ATF4 in MIN6 cells. Taken together, these results demonstrated that pancreatic β-cell apoptosis induced by ox-LDL treatment can be attributed, in part, to an SCGN/ATF4-dependent ER stress response.


2013 ◽  
Vol 450 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Makoto Shimizu ◽  
Juan Li ◽  
Ryuto Maruyama ◽  
Jun Inoue ◽  
Ryuichiro Sato

FGF19 (fibroblast growth factor 19), expressed in the small intestine, acts as an enterohepatic hormone by mediating inhibitory effects on the bile acid synthetic pathway and regulating carbohydrate and lipid metabolism. In an attempt to identify novel agents other than bile acids that induce increased FGF19 expression, we found that some ER (endoplasmic reticulum) stress inducers were effective. When intestinal epithelial Caco-2 cells were incubated with thapsigargin, marked increases were observed in the mRNA and secreted protein levels of FGF19. This was not associated with the farnesoid X receptor. Reporter gene analyses using the 5′-promoter region of FGF19 revealed that a functional AARE (amino-acid-response element) was localized in this region, and this site was responsible for inducing its transcription through ATF4 (activating transcription factor 4), which is activated in response to ER stress. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays showed that ATF4 bound to this site and enhanced FGF19 expression. Overexpression of ATF4 in Caco-2 cells induced increased FGF19 mRNA expression, whereas shRNA (short hairpin RNA)-mediated depletion of ATF4 significantly attenuated a thapsigargin-induced increase in FGF19 mRNA.


2002 ◽  
Vol 366 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Tetsuya OKADA ◽  
Hiderou YOSHIDA ◽  
Rieko AKAZAWA ◽  
Manabu NEGISHI ◽  
Kazutoshi MORI

In response to accumulation of unfolded proteins in the endoplasmic reticulum (ER), a homoeostatic response, termed the unfolded protein response (UPR), is activated in all eukaryotic cells. The UPR involves only transcriptional regulation in yeast, and approx. 6% of all yeast genes, encoding not only proteins to augment the folding capacity in the ER, but also proteins working at various stages of secretion, are induced by ER stress [Travers, Patil, Wodicka, Lockhart, Weissman and Walter (2000) Cell (Cambridge, Mass.) 101, 249–258]. In the present study, we conducted microarray analysis of HeLa cells, although our analysis covered only a small fraction of the human genome. A great majority of human ER stress-inducible genes (approx. 1% of 1800 genes examined) were classified into two groups. One group consisted of genes encoding ER-resident molecular chaperones and folding enzymes, and these genes were directly regulated by the ER-membrane-bound transcription factor activating transcription factor (ATF) 6. The ER-membrane-bound protein kinase double-stranded RNA-activated protein kinase-like ER kinase (PERK)-mediated signalling pathway appeared to be responsible for induction of the remaining genes, which are not involved in secretion, but may be important after cellular recovery from ER stress. In higher eukaryotes, the PERK-mediated translational-attenuation system is known to operate in concert with the transcriptional-induction system. Thus we propose that mammalian cells have evolved a strategy to cope with ER stress different from that of yeast cells.


Sign in / Sign up

Export Citation Format

Share Document