scholarly journals A Framework for the Land Use Change Dynamics Model Compatible with RCMs

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiangzheng Deng ◽  
Jiyuan Liu ◽  
Yingzhi Lin ◽  
Chenchen Shi

A framework of land use change dynamics (LUCD) model compatible with regional climate models (RCMs) is introduced in this paper. The LUCD model can be subdivided into three modules, namely, economic module, vegetation change module, and agent-based module. The economic module is capable of estimating the demand of land use changes in economic activities maximizing economic utility. A computable general equilibrium (CGE) modeling framework is introduced and an approach to introduce land as a production factor into the economic module is proposed. The vegetation change module provides the probability of vegetation change driven by climate change. The agroecological zone (AEZ) model is supposed to be the optimal option for constructing the vegetation change module. The agent-based module identifies whether the land use change demand and vegetation change can be realized and provides the land use change simulation results which are the underlying surfaces needed by RCM. By importing the RCMs' simulation results of climate change and providing the simulation results of land use change for RCMs, the LUCD model would be compatible with RCMs. The coupled simulation system composed of LUCD and RCMs can be very effective in simulating the land surface processes and their changing patterns.

2021 ◽  
Author(s):  
Pasquale Borrelli ◽  
David A. Robinson ◽  
Panos Panagos ◽  
Emanuele Lugato ◽  
Jae E. Yang ◽  
...  

<p>We use the latest projections of climate and land use change (year 2070) to assess potential global soil erosion rates by water erosion (interrill and rill processes) (Borrelli et al., 2020) using the RUSLE-based semiempirical modeling platform (GloSEM) (Borrelli et al., 2017). With some degree of uncertainty, GloSEM allows prediction of both state and change of soil erosion, identifying hotspots thanks to its high resolution (250 × 250 m) and predicting future variation based on projections of change in land use, soil conservation practices, and climate change.</p><p>Three alternative scenarios (2.6, 4.5, and 8.5) are tested using the Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) (LUH2 data) and 14 General Climate Models (GCMs) (WorldClim data), for a total of 42 modelling scenarios.</p><p>In the 2015 scenario, we estimate global soil erosion equal to 43 (+9.2/−7) Pg yr<sup>−1</sup>; with a study area covering ∼95.5% of the Earth’s land surface (in Borrelli et al. 2017 the study area was ~84.1% of the Earth’s land surface). The future scenarios suggest that socioeconomic developments impacting land use will either decrease (SSP1-RCP2.6–10%) or increase (SSP2-RCP4.5 +2%, SSP5-RCP8.5 +10%) water erosion by 2070. By contrast, climate projections, for all global dynamics scenarios, indicate a trend, moving toward a more vigorous hydrological cycle, which could increase global water erosion (+30 to +66%). Quantitatively, 56.1 (+20.6+ /- 16.4) Pg yr<sup>−1</sup>, 64.8 (+28.5/-21.4) Pg yr<sup>−1</sup>, and 71.6 (+32.5/-24.7) Pg yr<sup>−1</sup> are predicted for the SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5 scenarios, respectively.</p><p>The modeling framework presented in this study adopts standardized data in an adequate format to communicate with adjacent disciplines and moves us toward robust, reproducible, and open data science.</p><p> </p><p>References</p><p>Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V. and Bagarello, V., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature communications, 8(1), pp.1-13.</p><p>Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L. and Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, 117(36), pp.21994-22001.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Linghui Guo ◽  
Shaohong Wu ◽  
Dongsheng Zhao ◽  
Yunhe Yin ◽  
Guoyong Leng ◽  
...  

Based on the normalized difference vegetation index (NDVI), we analyzed vegetation change of the six major biomes across Inner Mongolia at the growing season and the monthly timescales and estimated their responses to climate change between 1982 and 2006. To reduce disturbance associated with land use change, those pixels affected by land use change from the 1980s to 2000s were excluded. At the growing season scale, the NDVI increased weakly in the natural ecosystems, but strongly in cropland. Interannual variations in the growing season NDVI for forest was positively linked with potential evapotranspiration and temperature, but negatively correlated with precipitation. In contrast, it was positively correlated with precipitation, but negatively related to potential evapotranspiration for other natural biomes, particularly for desert steppe. Although monthly NDVI trends were characterized as heterogeneous, corresponding to monthly variations in climate change among biome types, warming-related NDVI at the beginning of the growing season was the main contributor to the NDVI increase during the growing season for forest, meadow steppe, and typical steppe, but it constrained the NDVI increase for desert steppe, desert, and crop. Significant one-month lagged correlations between monthly NDVI and climate variables were found, but the correlation characteristics varied greatly depending on vegetation type.


2011 ◽  
Vol 47 (2) ◽  
pp. 339-356 ◽  
Author(s):  
MWANGI GATHENYA ◽  
HOSEA MWANGI ◽  
RICHARD COE ◽  
JOSEPH SANG

SUMMARYClimate change and land use change are two forces influencing the hydrology of watersheds and their ability to provide ecosystem services, such as clean and well-regulated streamflow and control of soil erosion and sediment yield. The Soil Water Assessment Tool, SWAT, a distributed, watershed-scale hydrological model was used with 18 scenarios of rainfall, temperature and infiltration capacity of land surface to investigate the spatial distribution of watershed services over the 3587 km2 Nyando basin in Western Kenya and how it is affected by these two forces. The total annual water yield varied over the 50 sub-basins from 35 to 600 mm while the annual sediment yield ranged from 0 to 104 tons ha−1. Temperature change had a relatively minor effect on streamflow and sediment yield compared to change in rainfall and land surface condition. Improvements in land surface condition that result in higher infiltration are an effective adaptation strategy to moderate the effects of climate change on supply of watershed services. Spatial heterogeneity in response to climate and land use change is large, and hence it is necessary to understand it if interventions to modify hydrology or adapt to climate change are to be effective.


2020 ◽  
Vol 13 (10) ◽  
pp. 4713-4747
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. On the one hand, future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human-induced land-use change can affect the climate system through biogeophysical and biogeochemical effects. To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated LAND surface model version 1), an integrated model that combines the land surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land-use models. The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balance, human water management, and crop growth incorporates a land use decision-making model based on economic activities. In MIROC-INTEG-LAND, spatially detailed information regarding water resources and crop yields is reflected in the prediction of future land-use change, which cannot be considered in the conventional integrated assessment models. In this paper, we introduce the details and interconnections of the submodels of MIROC-INTEG-LAND, compare historical simulations with observations, and identify various interactions between the submodels. By evaluating the historical simulation, we have confirmed that the model reproduces the observed states well. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand. The newly developed MIROC-INTEG-LAND could be combined with atmospheric and ocean models to develop an integrated earth system model to simulate the interactions among coupled natural–human earth system components.


2018 ◽  
Vol 22 (2) ◽  
pp. 1411-1435 ◽  
Author(s):  
Gina Tsarouchi ◽  
Wouter Buytaert

Abstract. Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000–2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000–2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030–2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.


2021 ◽  
Author(s):  
Karina Winkler ◽  
Richard Fuchs ◽  
Mark Rounsevell ◽  
Martin Herold

<p>Land use change is a major contributor to greenhouse gas emissions and biodiversity loss and, hence, a key topic for current sustainability debates and climate change mitigation. To understand its impacts, accurate data of global land use change and an assessment of its extent, dynamics, causes and interrelations are crucial. However, although numerous observational data is publicly available (e.g. from remote sensing), the processes and drivers of land use change are not yet fully understood. In particular, current global-scale land change assessments still lack either temporal consistency, spatial explicitness or thematic detail. <br>Here, we analyse the patterns of global land use change and its underlying drivers based on our novel high-resolution (~1x1 km) dataset of global land use/cover (LULC) change from 1960-2019, HILDA+ (Historic Land Dynamics Assessment+). The data harmonises multiple Earth Observation products and FAO land use statistics. It covers all transitions between six major LULC categories (urban areas, cropland, pasture/rangeland, forest, unmanaged grass-/shrubland and no/sparse vegetation).<br>On this basis, we show (1) a classification of global LULC transitions into major processes of land use change, (2) a quantification of their spatiotemporal patterns and (3) an identification of their major socioeconomic and environmental drivers across the globe. By using temporal cross-correlation, we study the influence of selected drivers on processes such as agricultural land abandonment, deforestation, forest degradation or urbanisation.<br>With this, we are able to map the patterns and drivers of global land use change at unprecedented resolution and compare them for different world regions. Giving new data-driven and quantitative insights into a largely untouched field, we identify tele-coupled globalisation patterns and climate change as important influencing factors for land use dynamics. Learning from the recent past, understanding how socio-economic and environmental factors affect the way humans use the land surface is essential for estimating future impacts of land use change and implementing measures of climate mitigation and sustainable land use policies.</p>


2018 ◽  
Vol 19 (11) ◽  
pp. 1899-1914 ◽  
Author(s):  
Yi Xi ◽  
Shushi Peng ◽  
Philippe Ciais ◽  
Matthieu Guimberteau ◽  
Yue Li ◽  
...  

Abstract As an essential source of freshwater river flow comprises ~80% of the water consumed in China. Per capita water resources in China are only a quarter of the global average, and its economy is demanding in water resources; this creates an urgent need to quantify the factors that contribute to changes in river flow. Here, we used an offline process-based land surface model (ORCHIDEE) at high spatial resolution (0.1° × 0.1°) to simulate the contributions of climate change, rising atmospheric CO2 concentration, and land-use change to the change in natural river flow for 10 Chinese basins from 1979 to 2015. We found that climate change, especially an increase in precipitation, was responsible for more than 90% of the changes in natural river flow, while the direct effect of rising CO2 concentration and land-use change contributes at most 6.3%. Nevertheless, rising CO2 concentration and land-use change cannot be neglected in most basins as these two factors significantly change transpiration. From 2003 to 2015, the increase in water consumption offset more than 30% of the increase in natural river flow in northern China, especially in the Yellow River basin (~140%), but it had little effect on observed river flow in southern China. Although the uncertainties of rainfall data and the statistical water consumption data could propagate the uncertainties in simulated river flow, this study could be helpful for water planning and management in China under the context of global warming.


Author(s):  
Gina Tsarouchi ◽  
Wouter Buytaert

Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. The Upper Ganges (UG) river basin in northern India experiences monsoon flooding almost every year. Studies have shown evidence of strong coupling between the land surface (soil moisture) and atmosphere (precipitation) in northern India, which means that regional climate variations and changes in land use/cover could influence the temporal dynamics of land-atmosphere interactions. <br><br> This work aims to quantify how future projections of land-use and climate change are affecting the hydrological response of the UG river basin. Two different sets of modelling experiments were run using the JULES Land Surface Model and covering the period 2000&amp;ndash;2035: In the first set, climate change is taken into account, as JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two Representative Concentration Pathways (RCP4.5 &amp; RCP8.5), whilst land use was kept constant at year 2010. In the second set, both climate change and land-use change were taken into consideration, as apart from the CMIP5 model outputs, JULES was also forced with a time-series of 15 future land-use scenarios, based on Landsat satellite imagery and Markov chain simulation. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. <br><br> Significant changes in the near-future (years 2030&amp;ndash;2035) hydrologic fluxes arise under future land cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow [Q<sub>5</sub>] is projected to increase by 63&amp;thinsp;% under the combined land-use and climate change high emissions scenario [RCP8.5]. The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. <br><br> Results are further presented in a water resources context, aiming to address potential implications of climate change from a water-demand perspective, highlighting that that demand thresholds in the UG region are projected to be exceeded in the future winter months (Dec&amp;ndash;Feb).


2008 ◽  
Vol 18 ◽  
pp. 43-50 ◽  
Author(s):  
S. Rost ◽  
D. Gerten ◽  
U. Heyder

Abstract. This study quantifies current and potential future changes in transpiration, evaporation, interception loss and river discharge in response to land use change, irrigation and climate change, by performing several distinct simulations within the consistent hydrology and biosphere modeling framework LPJmL (Lund-Potsdam-Jena managed Land). We distinguished two irrigation simulations: a water limited one in which irrigation was restricted by local renewable water resources (ILIM), and a potential one in which no such limitation was assumed but withdrawals from deep groundwater or remote rivers allowed (IPOT). We found that the effect of historical land use change as compared to potential natural vegetation was pronounced, including a reduction in interception loss and transpiration by 25.9% and 10.6%, respectively, whereas river discharge increased by 6.6% (climate conditions of 1991–2000). Furthermore, we estimated that about 1170 km3yr−1 of irrigation water could be withdrawn from local renewable water resources (in ILIM), which resulted in a reduction of river discharge by 1.5%. However, up to 1660 km3yr−1 of water withdrawals were required in addition under the assumption that optimal growth of irrigated crops was sustained (IPOT), which resulted in a slight net increase in global river discharge by 2.0% due to return flows. Under the HadCM3 A2 climate and emission scenario, climate change alone will decrease total evapotranspiration by 1.5% and river discharge by 0.9% in 2046–2055 compared to 1991–2000 average due to changes in precipitation patterns, a decrease in global precipitation amount, and the net effect of CO2 fertilization. A doubling of agricultural land in 2046–2055 compared to 1991–2000 average as proposed by the IMAGE land use change scenario will result in a decrease in total evapotranspiration by 2.5% and in an increase in river discharge by 3.9%. That is, the effects of land use change in the future will be comparable in magnitude to the effects of climate change in this particular scenario. On present irrigated areas future water withdrawal will increase especially in regions where climate changes towards warmer and dryer conditions will be pronounced.


Sign in / Sign up

Export Citation Format

Share Document