scholarly journals mTOR Inhibition: From Aging to Autism and Beyond

Scientifica ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Matt Kaeberlein

The mechanistic target of rapamycin (mTOR) is a highly conserved protein that regulates growth and proliferation in response to environmental and hormonal cues. Broadly speaking, organisms are constantly faced with the challenge of interpreting their environment and making a decision between “grow or do not grow.” mTOR is a major component of the network that makes this decision at the cellular level and, to some extent, the tissue and organismal level as well. Although overly simplistic, this framework can be useful when considering the myriad functions ascribed to mTOR and the pleiotropic phenotypes associated with genetic or pharmacological modulation of mTOR signaling. In this review, I will consider mTOR function in this context and attempt to summarize and interpret the growing body of literature demonstrating interesting and varied effects of mTOR inhibitors. These include robust effects on a multitude of age-related parameters and pathologies, as well as several other processes not obviously linked to aging or age-related disease.

2019 ◽  
Vol 75 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Jin Young Lee ◽  
Brian K Kennedy ◽  
Chen-Yu Liao

Abstract The mechanistic target of rapamycin (mTOR) is an essential nutrient-sensing kinase that integrates and regulates a number of fundamental cellular processes required for cell growth, cell motility, translation, metabolism, and autophagy. mTOR signaling has been implicated in the progression of many human diseases, and its dysregulation has been reported in several pathological processes, especially in age-related human diseases and mouse models of accelerated aging. In addition, many studies have demonstrated that the regulation of mTOR activity has a beneficial effect on longevity in several mouse models of aging. However, not all mouse models of accelerated aging show positive effects on aging-associated phenotypes in response to targeting mTOR signaling. Here, we review the effects of interventions that modulate mTOR signaling on aging-related phenotypes in different mouse models of accelerated aging and discuss their implications with respect to aging and aging-related disorders.


Author(s):  
Jennifer Alvarez Orellana ◽  
Hyun Jin Kwun ◽  
Sara Artusi ◽  
Yuan Chang ◽  
Patrick S Moore

Abstract Background Human polyomaviruses can reactivate in transplant patients, causing nephropathy, progressive multifocal leukoencephalopathy, Merkel cell carcinoma, pruritic, rash or trichodysplasia spinulosa. Sirolimus and related mechanistic target of rapamycin (mTOR) inhibitors are transplant immunosuppressants. It is unknown if they directly reactivate polyomavirus replication from latency beyond their general effects on immunosuppression. Methods In vitro expression and turnover of large T (LT) proteins from BK virus, JC virus (JCV), Merkel cell polyomavirus (MCV), human polyomavirus 7 (HPyV7), and trichodysplasia spinulosa polyomavirus (TSV) after drug treatment were determined by immunoblotting, proximity ligation, replicon DNA replication, and whole virus immunofluorescence assays. Results mTOR inhibition increased LT protein expression for all 5 pathogenic polyomaviruses tested. This correlated with LT stabilization, decrease in the S-phase kinase-associated protein 2 (Skp2) E3 ligase targeting these LT proteins for degradation, and increase in virus replication for JCV, MCV, TSV, and HPyV7. Treatment with sirolimus, but not the calcineurin inhibitor tacrolimus, at levels routinely achieved in patients, resulted in a dose-dependent increase in viral DNA replication for BKV, MCV, and HPyV7. Conclusions mTOR inhibitors, at therapeutic levels, directly activate polyomavirus replication through a Skp2-dependent mechanism, revealing a proteostatic latency mechanism common to polyomaviruses. Modifying existing drug regimens for transplant patients with polyomavirus-associated diseases may reduce symptomatic polyomavirus replication while maintaining allograft-sparing immunosuppression.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582093422 ◽  
Author(s):  
Michael N. Moore

Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5′-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-21 ◽  
Author(s):  
Song Xu ◽  
Li Li ◽  
Min Li ◽  
Mengli Zhang ◽  
Mei Ju ◽  
...  

The mechanistic target of Rapamycin (MTOR) protein is a crucial signaling regulator in mammalian cells that is extensively involved in cellular biology. The function of MTOR signaling in keratinocytes remains unclear. In this study, we detected the MTOR signaling and autophagy response in the human keratinocyte cell line HaCaT and human epidermal keratinocytes treated with MTOR inhibitors. Moreover, we detected the impact of MTOR inhibitors on keratinocytes exposed to the common carcinogenic stressors ultraviolet B (UVB) and UVA radiation. As a result, keratinocytes were sensitive to the MTOR inhibitors Rapamycin, everolimus, Torin 1, and pp242, but the regulation of MTOR downstream signaling was distinct. Next, autophagy induction only was observed in HaCaT cells treated with Rapamycin. Furthermore, we found that MTOR signaling was insensitive to UVB but sensitive to UVA radiation. UVB treatment also had no impact on the inhibition of MTOR signaling by MTOR inhibitors. Finally, MTOR inhibition by Rapamycin, everolimus, or pp242 did not affect the series of biological events in keratinocytes exposed to UVB, including the downregulation of BiP and PERK, activation of Histone H2A and JNK, and cleavage of caspase-3 and PARP. Our study demonstrated that MTOR inhibition in keratinocytes cannot always induce autophagy, and the MTOR pathway does not play a central role in the UVB triggered cellular response.


2009 ◽  
Vol 16 (3) ◽  
pp. 1017-1027 ◽  
Author(s):  
Alexander Gorshtein ◽  
Hadara Rubinfeld ◽  
Efrat Kendler ◽  
Marily Theodoropoulou ◽  
Vesna Cerovac ◽  
...  

The effect of mammalian target of rapamycin (mTOR) inhibitors on pituitary tumors is unknown. Akt overexpression was demonstrated in pituitary adenomas, which may render them sensitive to the anti-proliferative effects of these drugs. The objective of the study was to evaluate the anti-proliferative efficacy of the mTOR inhibitor, rapamycin, and its orally bioavailable analog RAD001 on the GH-secreting pituitary tumor GH3 and MtT/S cells and in human GH-secreting pituitary adenomas (GH-omas) in primary cell cultures. Treatment with rapamycin or RAD001 significantly decreased the number of viable cells and cell proliferation in a dose- and time-dependent manner. This was reflected by decreased phosphorylation levels of the downstream mTOR target p70S6K. Rapamycin treatment of GH3 cells induced G0/G1 cell cycle arrest. In other tumor cell types, this was attributed to a decrease in cyclin D1 levels. However, rapamycin did not affect cyclin D1 protein levels in GH3 cells. By contrast, it decreased cyclin D3 and p21/CIP, which stabilizes cyclin D/cyclin-dependent kinase 4 (cdk4) complexes. Rapamycin inhibited FCS-induced retinoblastoma phosphorylation and subsequent E2F-transcriptional activity. In response to decreased E2F activity, the expression of the E2F-regulated genes cyclin E and cdk2 was reduced. Our results showed that mTOR inhibitors potently inhibit pituitary cell proliferation, suggesting that mTOR inhibition may be a promising anti-proliferative therapy for pituitary adenomas. This therapeutic manipulation may have beneficial effects particularly for patients harboring invasive pituitary tumors resistant to current treatments.


2022 ◽  
Vol 12 ◽  
Author(s):  
Bruce Chen ◽  
Maurice B. Fluitt ◽  
Aaron L. Brown ◽  
Samantha Scott ◽  
Anirudh Gadicherla ◽  
...  

The mechanistic target of rapamycin (mTOR), a serine-threonine-specific kinase, is a cellular energy sensor, integrating growth factor and nutrient signaling. In the collecting duct (CD) of the kidney, the epithelial sodium channel (ENaC) essential in the determination of final urine Na+ losses, has been demonstrated to be upregulated by mTOR, using cell culture and mTOR inhibition in ex vivo preparations. We tested whether CD-principal cell (PC) targeted deletion of mTOR using Cre-lox recombination would affect whole-body sodium homeostasis, blood pressure, and ENaC regulation in mice. Male and female CD-PC mTOR knockout (KO) mice and wild-type (WT) littermates (Cre-negative) were generated using aquaporin-2 (AQP2) promoter to drive Cre-recombinase. Under basal conditions, KO mice showed a reduced (∼30%) natriuretic response to benzamil (ENaC) antagonist, suggesting reduced in vivo ENaC activity. WT and KO mice were fed normal sodium (NS, 0.45% Na+) or a very low Na+ (LS, <0.02%) diet for 7-days. Switching from NS to LS resulted in significantly higher urine sodium losses (relative to WT) in the KO with adaptation occurring by day 2. Blood pressures were modestly (∼5–10 mm Hg) but significantly lower in KO mice under both diets. Western blotting showed KO mice had 20–40% reduced protein levels of all three subunits of ENaC under LS or NS diet. Immunohistochemistry (IHC) of kidney showed enhanced apical-vs.-cellular localization of all three subunits with LS, but a reduction in this ratio for γ-ENaC in the KO. Furthermore, the KO kidneys showed increased ubiquitination of α-ENaC and reduced phosphorylation of the serum and glucocorticoid regulated kinase, type 1 [serum glucocorticoid regulated kinase (SGK1)] on serine 422 (mTOR phosphorylation site). Taken together this suggests enhanced degradation as a consequence of reduced mTOR kinase activity and downstream upregulation of ubiquitination may have accounted for the reduction at least in α-ENaC. Overall, our data support a role for mTOR in ENaC activity likely via regulation of SGK1, ubiquitination, ENaC channel turnover and apical membrane residency. These data support a role for mTOR in the collecting duct in the maintenance of body sodium homeostasis.


2021 ◽  
Author(s):  
Μαργαρίτα-Έλενα Παπανδρέου

Η αυτοφαγία είναι ένας φυσιολογικός ευκαρυωτικός μηχανισμός που διατηρεί την κυτταρική ομοιόσταση. Είναι το κύριο κυτταρικό καταβολικό μονοπάτι, το οποίο διασπά μακρομόρια όπως πρωτεΐνες, λιπίδια και οργανίδια, μέσω του κύριου αποικοδομητικού οργανιδίου, του λυσοσώματος. Παρόλο που αρχικά θεωρήθηκε ως οδός μαζικής αποδόμησης, τα πρόσφατα στοιχεία υπογραμμίζουν τον ιδιαίτερα επιλεκτικό χαρακτήρα του. Αυτός ο αυστηρά ελεγχόμενος, μηχανισμός λαμβάνει χώρα υπό φυσιολογικές συνθήκες αλλά μπορεί να προκληθεί και από διάφορες μορφές κυτταρικού στρες, όπως η στέρηση θρεπτικών ουσιών, το οξειδωτικό στρες και η βλάβη του DNA. Μπορεί να διαιρεθεί σε τρεις μηχανισμούς, την μακροαυτοφαγία, που αναφέρεται ως αυτοφαγία, την μικροαυτοφαγία και την αυτοφαγία με πρωτεΐνες-συνοδούς. Ο πυρήνας είναι το μεγαλύτερο οργανίδιο του κυττάρου, ωστόσο, οι μηχανισμός στους οποίους βασίζεται η ομοιόστασή του, δηλαδή η ανακύκλωσή του μέσω αυτοφαγίας ή άλλων καταβολικών μονοπατιών δεν είναι γνωστοί. Ο πυρήνας αποτελείται από μια μεγάλη ποικιλία μακρομορίων, τα οποία μπορούν να είναι αποκλειστικά πυρηνικά ή να εναλάσσονται διαρκώς μεταξύ του πυρήνα (νουκλεοπλάσματος) και του κυτταροπλάσματος μέσω της φωσφολιπιδικής διπλoστιβάδας του. Η εσωτερική πυρηνική μεμβράνη αποτελείται κυρίως από τις λαμίνες, τις πρωτεΐνες SUN, την εμερίνη και την ΗΡ1 που αλληλεπιδρά με την χρωματίνη και επηρεάζει τον εντοπισμό της και συνεπώς την γονιδιακή έκφραση. Οι πρωτεΐνες SUN αλληλεπιδρούν με τις νεσπρίνες (SYNEs), οι οποίες είναι πρωτεΐνες εξωτερικής πυρηνικής μεμβράνης που συνδέουν τον πυρήνα με τον κυτταροσκελετό. Οι πρωτεΐνες SUN μαζί με τις νεσπρίνες σχηματίζουν το σύμπλοκο LINC (συνδετήρας του συμπλέγματος πυρηνοσκελετού- κυτταροσκελετού). Οι νεσπρίνες ρυθμίζουν την πυρηνική μεταφορά, το σχήμα του πυρήνα, καθώς και την μεταφορά συστατικών και μακρομορίων μέσα και έξω από τον πυρήνα.Η νουκλεοφαγία περιγράφηκε αρχικά στον σακχαρομύκητα, με δύο μορφές, την τμηματική μικροπυρηνοφαγία (PMN) και την όψιμη πυρηνοφαγία (LN). Έτσι, οι ζυμομύκητες εκτελούν μικροπυρηνοφαγία καθώς και μακροπυρηνοφαγία σε φυσιολογικές συνθήκες ή μετά από πείνα. Στα θηλαστικά από την άλλη, το πυρηνικό LC3 αλληλεπιδρά με την λαμίνη Β μέσω της ειδικής και συγκεκριμένης LIR αλληλουχίας του, την οποία μεταφέρει μαζί με ετεροχρωματίνη στο κυτταρόπλασμα για λυσοσωμική αποδόμηση. Σε αντίθεση με τη ζύμη, η πείνα ή η αναστολή mTOR (mechanistic Target Of Rapamycin) δεν προκαλεί αυτήν την απόκριση με τη λαμίνη, τονίζοντας την ειδικότητα των διαφορετικών μεθόδων νουκλεοφαγίας σε διαφορετικά είδη. Η γενετική αναστολή αυτού του τύπου νουκλεοφαγίας οδηγεί σε πρόωρη γήρανση, αν και ο ακριβής μηχανισμός δεν έχει ακόμη διευκρινιστεί. Επιπρόσθετα, το DNA έχει αποδειχθεί ότι προκαλεί αυτοάνοσες διαταραχές όταν δεν αποδομείται από το λυσοσωμάτιο. Η ανεπάρκεια σε Dnase2a, το ένζυμο που είναι υπεύθυνο για την αποδόμηση του DNA, προκαλεί συσσώρευση DNA εκτός πυρήνα κάτι το οποίο προκαλεί σοβαρή φλεγμονώδη απόκριση μέσω της οδού STING. Η ανεπάρκεια της Dnase2a αποκαλύπτει τη λυσοσωμική κάθαρση του κατεστραμμένου πυρηνικού DNA μέσω αυτοφαγίας. Η συμβολή της δυσλειτουργικής επιλεκτικής αυτοφαγίας στον νευροεκφυλισμό είναι γνωστή, όταν συσσωματώματα πρωτεϊνών και οργανιδίων είναι άμεσο αποτέλεσμα της ελαττωματικής αυτοφαγίας. Οι ασθένειες πολυγλουταμίνης (PolyQ) προκαλούνται από την επέκταση των επαναλήψεων CAG στα γονίδια που κωδικοποιούν τις πρωτεΐνες PolyQ. Η ατροφία του ‘Dentatorubral-pallidoluysian’ που προκαλεί αταξία, άνοια και επιληψία, προκαλείται από μεταλλάξεις ατροφίνης και καταδεικνύει έναν ιδιόμορφο παθολογικό τρόπο πυρηνοφαγίας.
Οι μεταβολές στην πυρηνική μορφολογία αποτελούν σημαντικό χαρακτηριστικό της γήρανσης, των συνδρόμων και άλλων παθολογιών που σχετίζονται με την γήρανση. Η μοριακή βάση και η φυσιολογική σημασία αυτών των αλλαγών παραμένουν ασαφείς. Εδώ, δείχνουμε ότι η πυρηνοφαγία, η αυτοφαγική αποδόμηση του πυρηνικού υλικού, είναι ένας σημαντικός καθοριστικός παράγοντας για το μέγεθος του πυρηνίσκου. Διαπιστώνουμε ότι η πρωτεΐνη αγκύρωσης πυρηνι- κού φακέλου του νηματώδη Caenorhabditis elegans, ANC-1 και οι ορθόλογές της στα θηλαστικά, νεσπρίνη 1 και 2, είναι βασικοί ρυθμιστές της νουκλεοφαγίας. Η εξασθένηση της νουκλεοφαγίας μειώνει την αντίσταση στο στρες και τη μακρο- ζωία, η οποία προκαλείται από ασθενή σηματοδότηση ινσουλίνης και του προσο- μοιάζοντος στην ινσουλίνη αυξητικού παράγοντα (insulin/IGF1). Είναι αξιοσημείωτο ότι η πυρηνοφαγία απαιτείται για τη διατήρηση του μικρού πυρηνίσκου, που είναι ένδειξη μακροζωίας. Πράγματι, η αφθονία των κυριότερων συστατικών του πυρηνίσκου, όπως η φιμπριλαρίνη και τα νουκλεολικά προϊόντα, 18S rRNA και 45S rRNA, ρυθμίζεται από την πυρηνική αυτοφαγία. Έτσι, η ανακύκλωση της πυρηνι- κής μεμβράνης και άλλων πυρηνικών συστατικών μέσω της νουκλεοφαγίας είναι ένας εξελικτικά συντηρημένος μηχανισμός διασφάλισης μακροζωίας που προω- θεί τη νεανικότητα και καθυστερεί τη γήρανση υπό συνθήκες στρες, διατηρώ- ντας την πυρηνική αρχιτεκτονική και αποτρέποντας την πυρηνική επέκταση.Γενικότερα, το μέγεθος του πυρηνίσκου είναι βιοδείκτης για τη διάρκεια ζωής του οργανισμού ανεξάρτητα από τον τύπο των κυττάρων. Στον C. elegans, τα daf-2, eat-2, ife-2 και glp-1 μεταλλαγμένα ζώα, που ζουν περισσότερο από τα αγρίου τύπου στελέχη αποτελούνται από κύτταρα με μικρότερους πυρηνίσκους σε σύγκριση με τα φυσιολογικά. Έτσι, αυτά τα μονοπάτια σηματοδότησης επεκτείνουν τη διάρκεια ζωής τουλάχιστον μερικώς μέσω του ελέγχου του μεγέθους του πυρηνίσκου και της ριβοσωμικής βιογένεσης. Ομοίως, σε σύνδρομα πρόωρης γήρανσης όπως το σύνδρομο Hutchison-Gilford progeria, τα κύτταρα εμφανίζουν μεγαλύτερους πυρηνίσκους, υποδηλώνοντας αυξημένους ρυθμούς βιογένεσης ριβοσώματος και πρωτεϊνικής μετάφρασης.Εν κατακλείδι, αποκαλύπτουμε έναν νέο μηχανισμό με τον οποίο πρωτείνες της πυρηνικής μεμβράνης, οι νεσπρίνες, ανακυκλώνονται επιλεκτικά μέσω της αυτοφαγίας, ειδικά σε συνθήκες θερμιδικού περιορισμού in vivo. Παραδόξως, πρόκειται για μία αμφίδρομη αλληλεπίδραση, καθώς οι νεσπρίνες φαίνεται να προάγουν τον σχηματισμό αυτοφαγοσωμάτων, που θα μπορούσε ενδεχομένως να δρα ως αρνητική ανατροφοδότηση. Επιπλέον, διαπιστώνουμε ότι η αυτοφαγία που επάγεται από πείνα, μέσω των νεσπρινώνκαθορίζει το μέγεθος του πυρηνίσκου μέσω ενός νέου και εξελικτικά διατηρημένου κυτταρικού μηχανισμού με το να ελέγχει τα επιπέδα της φιμπριλαρίνης, της βασικής πρωτεΐνης του πυρηνίσκου. Επισημαίνουμε το γεγονός ότι η φιμπριλαρίνη είναι υπόστρωμα της αυτοφαγίας που επάγεται από πείνα. Υπό θερμιδικό περιορισμό, που προκαλεί παράταση στη διάρκεια ζωής, η αυτοφαγία και οι νεσπρίνες δρουν στο ίδιο μοριακό μονοπάτι για τη ρύθμιση τηςριβοσωμικής βιογένεσης. Αυτός ο διακριτός μηχανισμός πυρηνοφαγίας θα μπορούσε να λειτουργήσει ως ρεοστάτης για τη φυσιολογική γήρανση.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4787-4787
Author(s):  
Xia Xiao ◽  
Hongmei Luo ◽  
Amanda C. LaRue ◽  
Bradley A. Schulte ◽  
Yong Wang

Abstract Abstract 4787 The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates protein synthesis, gene transcription, cell growth and cell proliferation. Previous studies have demonstrated that abnormalities in the Pten-mTOR pathway may contribute to the development of leukemia and lead to premature exhaustion of hematopoietic stem cells (HSCs). These findings suggest a role for mTOR in the regulation of HSC self-renewal and cell transformation. The aim of this study was to investigate the involvement of mTOR signaling in the survival and proliferation of HSCs and hematopoietic progenitor cells (HPCs). Immunofluorescent staining with antibodies against phosphorylated mTOR and S6 kinase revealed that Thrombopoietin (Tpo) activates mTOR in cultured mouse bone marrow (BM) lineage negative cells, suggesting that Tpo may promote the survival and proliferation of HSCs/HPCs via activation of the mTOR signaling pathway. Further studies revealed that treatment with an mTOR specific small molecule inhibitor (Ku-69734) significantly suppressed the colony-forming ability of HPCs as evidenced by a dose-dependent decrease in the production of CFU-GM, BFU-E and CFU-GEMM. We also examined the clonogenic function of HSCs using cobblestone-area forming cell (CAFC) assays and found that Ku-69734 treatment markedly reduced the number of CAFCs in long-term BM culture. Moreover, immunophenotyping and flow cytometric analyses showed that inhibition of mTOR induced apoptosis primarily in HSCs and to a lesser degree in HPCs, indicating that mTOR inhibition may suppress the clonogenic function of HSCs and HPCs via the induction of apoptosis. Together, these data demonstrate that mTOR signaling is required for the survival and proliferation of HSCs and HPCs. Given that many mTOR inhibitors are currently in clinical trials for the treatment of cancers, our findings provide the rationale to further evaluate the potential toxicity of mTOR inhibitors in HSCs/HPCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document