scholarly journals Gastrodia elataAmeliorates High-Fructose Diet-Induced Lipid Metabolism and Endothelial Dysfunction

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Min Chul Kho ◽  
Yun Jung Lee ◽  
Jeong Dan Cha ◽  
Kyung Min Choi ◽  
Dae Gill Kang ◽  
...  

Overconsumption of fructose results in dyslipidemia, hypertension, and impaired glucose tolerance, which have documented correlation with metabolic syndrome.Gastrodia elata, a widely used traditional herbal medicine, was reported with anti-inflammatory and antidiabetes activities. Thus, this study examined whether ethanol extract ofGastrodia elataBlume (EGB) attenuate lipid metabolism and endothelial dysfunction in a high-fructose (HF) diet animal model. Rats were fed the 65% HF diet with/without EGB 100 mg/kg/day for 8 weeks. Treatment with EGB significantly suppressed the increments of epididymal fat weight, blood pressure, plasma triglyceride, total cholesterol levels, and oral glucose tolerance, respectively. In addition, EGB markedly prevented increase of adipocyte size and hepatic accumulation of triglycerides. EGB ameliorated endothelial dysfunction by downregulation of endothelin-1 (ET-1) and adhesion molecules in the aorta. Moreover, EGB significantly recovered the impairment of vasorelaxation to acetylcholine and levels of endothelial nitric oxide synthase (eNOS) expression and induced markedly upregulation of phosphorylation AMP-activated protein kinase (AMPK)αin the liver, muscle, and fat. These results indicate that EGB ameliorates dyslipidemia, hypertension, and insulin resistance as well as impaired vascular endothelial function in HF diet rats. Taken together, EGB may be a beneficial therapeutic approach for metabolic syndrome.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ji Hun Park ◽  
Min Chul Kho ◽  
Hye Yoom Kim ◽  
You Mee Ahn ◽  
Yun Jung Lee ◽  
...  

Increased fructose ingestion has been linked to obesity, hyperglycemia, dyslipidemia, and hypertension associated with metabolic syndrome. Blackcurrant (Ribes nigrum; BC) is a horticultural crop in Europe. To induce metabolic syndrome, Sprague-Dawley rats were fed 60% high-fructose diet. Treatment with BC (100 or 300 mg/kg/day for 8 weeks) significantly suppressed increased liver weight, epididymal fat weight, C-reactive protein (CRP), total bilirubin, leptin, and insulin in rats with induced metabolic syndrome. BC markedly prevented increased adipocyte size and hepatic triglyceride accumulation in rats with induced metabolic syndrome. BC suppressed oral glucose tolerance and protein expression of insulin receptor substrate-1 (IRS-1) and phosphorylated AMP-activated protein kinase (p-AMPK) in muscle. BC significantly suppressed plasma total cholesterol, triglyceride, and LDL content. BC suppressed endothelial dysfunction by inducing downregulation of endothelin-1 and adhesion molecules in the aorta. Vascular relaxation of thoracic aortic rings by sodium nitroprusside and acetylcholine was improved by BC. The present study provides evidence of the potential protective effect of BC against metabolic syndrome by demonstrating improvements in dyslipidemia, hypertension, insulin resistance, and obesityin vivo.


2020 ◽  
Author(s):  
Xiang Hua Quan ◽  
Qie Guo ◽  
Xiang-Peng Li ◽  
Yu Liang ◽  
Meng-Na Cui ◽  
...  

Abstract Background: Malus toringoides (Rehd.) Hughes, as a traditional medicinal and edible plant used in Tibet, China, is used to treat hypertension, hyperlipemia and liver diseases. This present study was designed to investigate the effects of ethanol extract of M. toringoides (EMT) on metabolic syndrome (MS) and liver injury in high-fructose-induced mice. Methods: The C57BL/6J male mice were divided into five groups (n=8). Con group was drunk with standard water, Fru group and the other three with 30% high-fructose water for 8 weeks. EMT (195 mg/kg, 390 mg/kg, 780 mg/kg) was administered to each of high fructose groups simultaneously. Glucose tolerance tests (GTT) were performed. Blood samples were collected from eyeball. The mice were euthanized. Liver and epididymal fat were weighed. The palmitic acid (PA)-induced HepG2 cells were used to evaluate the protective effect of EMT on liver lipid accumulation. Results: The administration of EMT is helpful to maintain near normal body weight, blood glucose, insulin, organ index, glucose tolerance, and serum levels of TC, TG, LDL-C, HDL-C, Apo-B, and Apo-A1 (P < 0.05 or P < 0.01). EMT treatment significantly improved liver injury by the down-regulation of liver lipid accumulation, oxidative stress and inflammatory mediators in high-fructose-induced mice (P < 0.05 or P < 0.01). In vitro, EMT (25 µg/mL-200 µg/mL) significantly decreased lipid droplet accumulation and TG content in PA-induced HepG2 (P < 0.05 or P < 0.01).Conclusion: EMT can obviously improve high fructose-induced MS in mice. In vitro, EMT can inhibit PA-induced lipid accumulation in HepG2 cells.which may emphasizes the use of M. toringoides supplementation in everyday life of over-weighted persons and opens perspectives for clinical trials.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Min Chul Kho ◽  
Yoon Jung Lee ◽  
You Mee Ahn ◽  
Yoon Hee Choi ◽  
A Young Kim ◽  
...  

2016 ◽  
Vol 230 (1) ◽  
pp. 67-79 ◽  
Author(s):  
Giselle Adriana Abruzzese ◽  
Maria Florencia Heber ◽  
Silvana Rocio Ferreira ◽  
Leandro Martin Velez ◽  
Roxana Reynoso ◽  
...  

Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1751
Author(s):  
Saroj Khatiwada ◽  
Virginie Lecomte ◽  
Michael F. Fenech ◽  
Margaret J. Morris ◽  
Christopher A. Maloney

Obesity increases the risk of metabolic disorders, partly through increased oxidative stress. Here, we examined the effects of a dietary micronutrient supplement (consisting of folate, vitamin B6, choline, betaine, and zinc) with antioxidant and methyl donor activities. Male Sprague Dawley rats (3 weeks old, 17/group) were weaned onto control (C) or high-fat diet (HFD) or same diets with added micronutrient supplement (CS; HS). At 14.5 weeks of age, body composition was measured by magnetic resonance imaging. At 21 weeks of age, respiratory quotient and energy expenditure was measured using Comprehensive Lab Animal Monitoring System. At 22 weeks of age, an oral glucose tolerance test (OGTT) was performed, and using fasting glucose and insulin values, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was calculated as a surrogate measure of insulin resistance. At 30.5 weeks of age, blood and liver tissues were harvested. Liver antioxidant capacity, lipids and expression of genes involved in lipid metabolism (Cd36, Fabp1, Acaca, Fasn, Cpt1a, Srebf1) were measured. HFD increased adiposity (p < 0.001) and body weight (p < 0.001), both of which did not occur in the HS group. The animals fed HFD developed impaired fasting glucose, impaired glucose tolerance, and fasting hyperinsulinemia compared to control fed animals. Interestingly, HS animals demonstrated an improvement in fasting glucose and fasting insulin. Based on insulin release during OGTT and HOMA-IR, the supplement appeared to reduce the insulin resistance developed by HFD feeding. Supplementation increased hepatic glutathione content (p < 0.05) and reduced hepatic triglyceride accumulation (p < 0.001) regardless of diet; this was accompanied by altered gene expression (particularly of CPT-1). Our findings show that dietary micronutrient supplementation can reduce weight gain and adiposity, improve glucose metabolism, and improve hepatic antioxidant capacity and lipid metabolism in response to HFD intake.


2012 ◽  
Vol 166 (4) ◽  
pp. 647-655 ◽  
Author(s):  
Nihal Thomas ◽  
Louise G Grunnet ◽  
Pernille Poulsen ◽  
Solomon Christopher ◽  
Rachaproleu Spurgeon ◽  
...  

ObjectiveLow birth weight (LBW) is common in the Indian population and may represent an important predisposing factor for type 2 diabetes (T2D) and the metabolic syndrome. Intensive metabolic examinations in ethnic LBW Asian Indians have been almost exclusively performed in immigrants living outside India. Therefore, we aimed to study the metabolic impact of being born with LBW in a rural non-migrant Indian population.Subjects and methodsOne hundred and seventeen non-migrant, young healthy men were recruited from a birth cohort in a rural part of south India. The subjects comprised 61 LBW and 56 normal birth weight (NBW) men, with NBW men acting as controls. Subjects underwent a hyperinsulinaemic euglycaemic clamp, i.v. and oral glucose tolerance tests and a dual-energy X-ray absorptiometry scan. The parents' anthropometric status and metabolic parameters were assessed.ResultsMen with LBW were shorter (167±6.4 vs 172±6.0 cm,P<0.0001), lighter (51.9±9 vs 55.4±7 kg,P=0.02) and had a reduced lean body mass (42.1±5.4 vs 45.0±4.5 kg,P=0.002) compared with NBW controls. After adjustment for height and weight, the LBW subjects had increased diastolic blood pressure (77±6 vs 75±6 mmHg,P=0.01). Five LBW subjects had impaired glucose tolerance.In vivoinsulin secretion and peripheral insulin action were similar in both the groups. Mothers of the LBW subjects were 3 cm shorter than the control mothers.ConclusionOnly subtle features of the metabolic syndrome and changes in body composition among LBW rural Indians were found. Whether other factors such as urbanisation and ageing may unmask more severe metabolic abnormalities may require a long-term follow-up.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A Taheri ◽  
P Doytcheva ◽  
E Tarasco ◽  
W Gut ◽  
M Engeli ◽  
...  

Abstract Background Islet amyloid polypeptide (IAPP; or amylin) is produced in pancreatic B-cells and co-secreted with insulin in response to nutrients. In insulin resistance and type 2 diabetes (T2D), higher secretion and impaired processing of IAPP results in its aggregation, contributing to amyloid-induced apoptosis of pancreatic B-cells. Insight into IAPP's role in diabetic endothelial dysfunction is scarce. Purpose Rats transgenic for human IAPP (hIAPP), which in contrast to rodent IAPP produces amyloid deposits and contributes to diabetes due to B-cell failure, were studied to understand the mechanisms of endothelial dysfunction in T2D and test the vasoprotective actions of an anti-hIAPP antibody. Methods Male hemizygous transgenic Sprague-Dawley rats with islet B-cell expression of hIAPP (TG) and wild-type (WT) controls were sacrificed at 2, 3, 6- and 9-months age to assess endothelial function. In a second experiment, TG rats received weekly injections of antibody against aggregated hIAPP (3 mg/kg; TG-Ab) from 3–12 months of age; TG and WT controls received PBS. Oral glucose tolerance was assessed before harvesting. At the respective time points (12 mts in exp. 2), thoracic aortic rings were isolated and subjected to ex vivo isometric tension recording. After contraction with norepinephrine (NE 1x10–7 mol/L), cumulative relaxation responses were performed to glucagon-like peptide-1 (GLP-1; 10–12 to 10–6 mol/L) and insulin (10–11 to 10–6 mol/L). Pancreas and aortic arch samples were used for immunostaining of hIAPP antibody engagement. Results GLP-1 and insulin-mediated vasodilation was impaired in 3 month-old TG rats compared to WT. Glucose intolerance appeared in TG rats at 6 months in comparison to WT (p<0.0001), indicating that endothelial dysfunction in TG rats precedes the onset of glucose intolerance. Anti-hIAPP antibody showed selectivity against aggregated IAPP in pancreatic islets, but there was no target engagement in the aortic arch, questioning a pathogenic role of IAPP deposition in the aortic wall. At 12 months, glucose control in TG-Ab rats was improved in comparison to TG control rats (p<0.013). Vasodilatation in TG-Ab rats was restored in response to GLP-1 (35.5% ± 4.6 vs. 16.0% ± 3.1 in TG controls), similar to that of WT rats (35.5% ± 6.5). Vasodilatation in response to insulin (48.9% ± 4.2) was improved in comparison to both TG (29.4% ± 3.0) and WT controls (32.5% ± 5.7) (p<0.0001; 2-way ANOVA, n=6–11 for all groups. Conclusion Early endothelial dysfunction develops in hIAPP rats compared to WT. Endothelial dysfunction is restored by the anti-hIAPP antibody treatment via improved oral glucose tolerance, but it remains unclear whether this effect is due to a local action in the aorta or a secondary effect, e.g. due to a reduction in pancreatic IAPP deposition.


2020 ◽  
Vol 111 (4) ◽  
pp. 864-876
Author(s):  
Anne K Eriksen ◽  
Carl Brunius ◽  
Mohsen Mazidi ◽  
Per M Hellström ◽  
Ulf Risérus ◽  
...  

ABSTRACT Background A whole-grain (WG)–rich diet has shown to have potential for both prevention and treatment of the metabolic syndrome (MetS), which is a cluster of risk factors that increase the risk of type 2 diabetes and cardiovascular disease. Different WGs may have different health effects. WG rye, in particular, may improve glucose homeostasis and blood lipids, possibly mediated through fermentable dietary fiber and lignans. Recent studies have also suggested a crucial role of the gut microbiota in response to WG. Objectives The aim was to investigate WG rye, alone and with lignan supplements [secoisolariciresinol diglucoside (SDG)], and WG wheat diets on glucose tolerance [oral-glucose-tolerance test (OGTT)], other cardiometabolic outcomes, enterolignans, and microbiota composition. Moreover, we exploratively evaluated the role of gut microbiota enterotypes in response to intervention diets. Methods Forty men with MetS risk profile were randomly assigned to WG diets in an 8-wk crossover study. The rye diet was supplemented with 280 mg SDG at weeks 4–8. Effects of treatment were evaluated by mixed-effects modeling, and effects on microbiota composition and the role of gut microbiota as a predictor of response to treatment were analyzed by random forest plots. Results The WG rye diet (± SDG supplements) did not affect the OGTT compared with WG wheat. Total and LDL cholesterol were lowered (−0.06 and −0.09 mmol/L, respectively; P &lt; 0.05) after WG rye compared with WG wheat after 4 wk but not after 8 wk. WG rye resulted in higher abundance of Bifidobacterium [fold-change (FC) = 2.58, P &lt; 0.001] compared with baseline and lower abundance of Clostridium genus compared with WG wheat (FC = 0.54, P = 0.02). The explorative analyses suggest that baseline enterotype is associated with total and LDL-cholesterol response to diet. Conclusions WG rye, alone or with SDG supplementation, compared with WG wheat did not affect glucose metabolism but caused transient LDL-cholesterol reduction. The effect of WG diets appeared to differ according to enterotype. This trial was registered at www.clinicaltrials.gov as NCT02987595.


Endocrinology ◽  
2009 ◽  
Vol 150 (11) ◽  
pp. 5192-5192
Author(s):  
Ayman M. Arafat ◽  
Martin O. Weickert ◽  
Jan Frystyk ◽  
Joachim Spranger ◽  
Christof Schöfl ◽  
...  

ABSTRACT Context: Insulin interacts with the GH-IGF system by a reciprocal regulation of IGF-binding proteins (IGFBP) and GH, which in turn regulate insulin sensitivity via bioactive IGF-I. This network is linked to metabolic syndrome and cardiovascular diseases. Objective: We evaluated the effect of glucose and insulin on IGFBP-1-4, particularly IGFBP-2, in the regulation of bioactive IGF-I and its relation to insulin resistance. Setting: The study was conducted at an endocrinology center. Research Design and Methods: Twenty-four healthy subjects (12 men; aged 21–72 yr; body mass index 25.9 ± 0.9 kg/m2) and 19 subjects with impaired glucose tolerance (IGT; eight men; aged 26–71 yr; body mass index 28.9 ± 1.2 kg/m2 ) were prospectively studied using oral glucose tolerance test and hyperinsulinemic euglycemic clamp. Results: During the clamp, insulin decreased IGF-I bioactivity in both IGT subjects and controls (−16.2 ± 2.8 and −13.9 ± 3.3%, respectively; P &lt; 0.01). In addition, insulin increased IGFBP-2 and GH and decreased IGFBP-1 and -4 but did not alter total IGF-I, IGF-II, or IGFBP-3 levels. During the oral glucose tolerance test, GH and IGFBP-1 were markedly suppressed. Subjects with IGT showed more pronounced insulin resistance and lower GH, IGFBP-1, and IGFBP-2 levels (P &lt; 0.05). In multiple regression analysis, IGFBP-2 was an independent predictor of insulin sensitivity (β = 0.36, P &lt; 0.05) and IGF-I bioactivity (β = −0.5, P &lt; 0.05). Conclusions: Our data indicate that insulin acutely decreases IGF-I bioactivity through differential modulation of IGFBPs. Furthermore, IGFBP-2 plays a central role in the insulin-IGF system cross talk and is closely linked to insulin resistance, thereby providing a further explanation for its association with the metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document