scholarly journals Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Guohai Liu ◽  
Junqin Yang ◽  
Ming Chen ◽  
Qian Chen

A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1238 ◽  
Author(s):  
Dong Yu ◽  
Xiaoyan Huang ◽  
Lijian Wu ◽  
Youtong Fang

This paper presents a novel outer rotor permanent-magnet vernier machine (PMVM) for in-wheel direct-drive application. The overhang structures of the rotor and flux modulation pole (FMP) are introduced. The soft magnetic composite (SMC) was adopted in the FMP overhang to allow more axial flux. The 3-D finite element analysis (FEA) was carried out to prove that the proposed machine can effectively utilize the end winding space to enhance the air-gap flux density. Hence the PMVM can offer 27.3% and 14.5% higher torque density than the conventional machine with no overhang structure and the machine with only rotor overhang structure, respectively. Nevertheless, the efficiency of the proposed machine is slightly lower than the conventional ones due to the extra losses from the overhang structures.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 152
Author(s):  
Hassan Ali ◽  
Erwan Sulaiman ◽  
Zamri Omar ◽  
M F. Omar ◽  
Faisal Amin

All electric aircraft (AEA), is one of the main intentions of the aerospace industry for future. Where electrical machines are capable to provide high torque density and are dominant for the feasibility of direct drive electrical driving force for aircraft applications. Besides, low weight and high torque capabilities, the best candidate solution should also inherently fault tolerant for aircraft applications. For these reasons, a new sort of machine has been familiarized and published in last decade know as flux switching machine (FSM). FSMs contain all excitation sources on stator side with robust rotor structure. According to the type of excitation, FSMs are characterized into three types such as permanent magnet PM FSM, field excitation FE FSM and hybrid excitation HE FSM. PM FSM and FE FSM use PM and FE coil for their excitation sources respectively, whereas both PM and FE coil is used in HE-FSM for excitation. Subsequently, these machines have shown high torque to weight ratios and high efficiency during research in the last decade. Therefore in this paper, a new structure of 12S-8P HE-FSM with segmental rotor has been proposed and analyzed. The proposed segmented HE-FSM has the simple structure using only three PMs and three FECs. The proposed structure is analyzed using commercial 2D FEA package, JMAG-designer ver. 14.0. This paper presents the coil test analysis of segmented HE-FSM to confirm the working principle. Besides, cogging torque, flux strengthening, torque vs current densities and power vs current densities have been analyzed and presented. 


Author(s):  
Byeong-chul Lee ◽  
Cheon-ho Song ◽  
Do-hyun Kim ◽  
Ki-chan Kim

In this paper, the design process of BLDC adopting the dual rotor method that can reduce the overall size of the motor while generating the same torque as the conventional Permanent Magnet BLDC is analyzed. A simple size is selected by obtaining the torque per rotor volume (TRV), and a method of matching the counter electromotive force by selecting the pole arc of the magnet through a magnetic equivalent circuit is analyzed. Since the efficiency is low because the 120-degree commutation method is selected, the middle stator is optimized through detailed design through the experimental design method. Afterwards, it has the advantage of being able to shift without stopping due to the characteristic of a dual rotor. For this, an analysis of the driving characteristics for each mode is performed.


2012 ◽  
Vol 06 ◽  
pp. 109-114
Author(s):  
BYUNG-CHUL WOO ◽  
DO-KWAN HONG ◽  
JI-YOUNG LEE

The most distinctive advantage of transverse flux motor(TFM) is high torque density which has prompted many researches into studying various design variants. TFM is well suited for low speed direct drive applications due to its high torque density. This paper deals with simulation based comparisons between a surface permanent magnet transverse flux motor(SPM-TFM) and an interior permanent magnet transverse flux motor(IPM-TFM). A commercial finite element analysis(FEA) software Maxwell 3D is used for electromagnetic field computation to fully analyze complex geometry of the TFMs. General characteristics, such as cogging torque, rated torque and torque ripple characteristics of the two TFMs are analyzed and compared by extensive 3D FEA.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012068
Author(s):  
Qiang Yue ◽  
Hao Qian

Abstract As the braking device of the aircraft electromechanical actuation system, the brake is a vital link in the aircraft attitude change or function adjustment. Among them, the permanent magnet brake has attracted extensive attention in the field of aerospace technology because of its advantages of low energy consumption and high reliability. At present, the domestic permanent magnet brake is heavy and the braking torque density is generally low, which limits its further development in the field of aerospace. In order to improve the braking torque density of permanent magnet brake, this paper proposes a research method of high torque density permanent magnet brake is proposed. By establishing the magnetic circuit structure of the permanent magnet brake, the relationship between the external characteristics of the permanent magnet brake and the design parameters is determined, and then the performance parameters of the permanent magnet brake are simulated and verified by using the finite element simulation software. Finally, through the physical test, the results show that this method can effectively improve the braking torque density.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document