scholarly journals Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

2014 ◽  
Vol 6 ◽  
pp. 247384 ◽  
Author(s):  
Jinghui Peng ◽  
Songjing Li ◽  
Yongbo Fan

The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


Author(s):  
P. K. Karsh ◽  
Bindi Thakkar ◽  
R. R. Kumar ◽  
Abhijeet Kumar ◽  
Sudip Dey

The delamination is one of the major modes of failure occurring in the laminated composite due to insufficient bonding between the layers. In this paper, the natural frequencies of delaminated S-glass and E-glass epoxy cantilever composite plates are presented by employing the finite element method (FEM) approach. The rotary inertia and transverse shear deformation are considered in the present study. The effect of parameters such as the location of delamination along the length, across the thickness, the percentage of delamination, and ply-orientation angle on first three natural frequencies of the cantilever plates are presented for S-glass and E-glass epoxy composites. The standard eigenvalue problem is solved to obtain the natural frequencies and corresponding mode shapes. First three mode shape of S-Glass and E-Glass epoxy laminated composites are portrayed corresponding to different ply angle of lamina.


1998 ◽  
Vol 120 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Huan Wang ◽  
Keith Williams ◽  
Wei Guan

Based on their three-dimensional mode shapes, the vibrational modes of free finite length thick cylinders can be classified into 6 categories, consisting of pure radial, radial motion with radial shearing, extensional, circumferential, axial bending, and global modes. This classification, together with the numbers of both the circumferential and the longitudinal nodes, is sufficient to identify each mode of a finite length thick cylinder. The mode classification was verified experimentally by measurements on a thick cylinder. According to the displacement distribution ratio in the radial, tangential and longitudinal directions, the effect of varying cylinder length on the vibrational modes is such that all the modes can be broadly categorized as either pure radial modes, or non pure radial modes. The natural frequencies and mode shapes of the former are dependent upon only the radial dimensions of the models, while the natural frequencies and mode shapes of the latter are dependent upon both the axial length and radial thickness.


2021 ◽  
Vol 8 (11) ◽  
pp. 55-62
Author(s):  
Putti Venkata Siva Teja ◽  
Badatala Ooha ◽  
Kondeti Sravanth

In transverse vibrations the element moves to and fro in a direction perpendicular to the direction of the advance of the wave. To determine the vibration characteristics i.e., natural frequencies and mode shapes, modal analysis is a process for a structure or a machine component while is being designed. In real life, aero planes, missiles, rockets, space vehicles, satellites, sub marines etc are modeled as free-free mechanical systems. In this paper an attempt was made to compare natural frequency for two composite materials- ladies finger with Glass fiber composite and Hemp with Glass fiber composite by taking as cantilever beams. The cantilever beam which is fixed at one end is vibrated to obtain the natural frequency, mode shapes at four different modes. A simple low cost demonstration experiment is performed in this paper by using common apparatus in order to compare theoretical, numerical (FEM analysis) profiles of two free-free thin two rectangular composite beams of dimensions 305*49.5* 7 in mm. Keywords: Natural frequencies, Mode shapes, Vibration characteristics, Ladies finger fiber, Hemp fiber, Glass fiber, FEM analysis, Free-Free system.


2013 ◽  
Vol 20 (3) ◽  
pp. 459-479 ◽  
Author(s):  
Meixia Chen ◽  
Jianhui Wei ◽  
Kun Xie ◽  
Naiqi Deng ◽  
Guoxiang Hou

Wave based method which can be recognized as a semi-analytical and semi-numerical method is presented to analyze the free vibration characteristics of ring stiffened cylindrical shell with intermediate large frame ribs for arbitrary boundary conditions. According to the structure type and the positions of discontinuities, the model is divided into different substructures whose vibration field is expanded by wave functions which are exactly analytical solutions to the governing equations of the motions of corresponding structure type. Boundary conditions and continuity equations between different substructures are used to form the final matrix to be solved. Natural frequencies and vibration mode shapes are calculated by wave based method and the results show good agreement with finite element method for clamped-clamped, shear diaphragm – shear diaphragm and free-free boundary conditions. Free vibration characteristics of ring stiffened cylindrical shells with intermediate large frame ribs are compared with those with bulkheads and those with all ordinary ribs. Effects of the size, the number and the distribution of intermediate large frame rib are investigated. The frame rib which is large enough is playing a role as bulkhead, which can be considered imposing simply supported and clamped constraints at one end of the cabin and dividing the cylindrical shell into several cabins vibrating separately at their own natural frequencies.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Yu-Jia Hu ◽  
Yaoyu Wang ◽  
Weidong Zhu ◽  
Haolin Li

Abstract Parametric expressions of equivalent stiffnesses of a ball-screw shaft are obtained by derivation of its geometric parameters, the finite element method (FEM), and data fitting based on a modified probability density function of log-normal distribution. A dynamic model of a ball-screw drive that considers effects of bearing stiffnesses, the mass of the nut, and the axial pretension is established based on equivalent stiffnesses of its shaft. With the dynamic model and modal experimental results obtained by Bayesian operational modal analysis (BOMA), installation parameters of the ball-screw drive are identified by a genetic algorithm (GA) with a new comprehensive objective function that considers natural frequencies, mode shapes, and flexibility of the ball-screw drive. The effectiveness of the methodology is experimentally validated.


2020 ◽  
Vol 6 (4) ◽  
pp. 79
Author(s):  
D. S. Craveiro ◽  
M. A. R. Loja

The present work aimed to characterize the free vibrations’ behaviour of nanocomposite plates obtained by incorporating graded distributions of carbon nanotubes (CNTs) in a polymeric matrix, considering the carbon nanotubes’ agglomeration effect. This effect is known to degrade material properties, therefore being important to predict the consequences it may bring to structures’ mechanical performance. To this purpose, the elastic properties’ estimation is performed according to the two-parameter agglomeration model based on the Eshelby–Mori–Tanaka approach for randomly dispersed nano-inclusions. This approach is implemented in association with the finite element method to determine the natural frequencies and corresponding mode shapes. Three main agglomeration cases were considered, namely, agglomeration absence, complete agglomeration, and partial agglomeration. The results show that the agglomeration effect has a negative impact on the natural frequencies of the plates, regardless the CNTs’ distribution considered. For the corresponding vibrations’ mode shapes, the agglomeration effect was shown in most cases not to have a significant impact, except for two of the cases studied: for a square plate and a rectangular plate with symmetrical and unsymmetrical CNTs’ distribution, respectively. Globally, the results confirm that not accounting for the nanotubes’ agglomeration effect may lead to less accurate elastic properties and less structures’ performance predictions.


2010 ◽  
Vol 97-101 ◽  
pp. 3392-3396
Author(s):  
Li Gang Qu ◽  
Ke Qiang Pan ◽  
Xin Chen

The dynamic characteristic of flexible assembling fixture (FAF) for aircraft panel component is analysed by the method of finite element modal analysis. Consequently, the every order of natural frequencies and mode shapes of given different postures of the FAF are obtained. It structural weakness were pointed out through the analysis results of the modal vibration characteristics. The properties of mass and stiffness of the FAF's components are concurrently calculated, whose optimal matching and harmonizing with each other have great influence on the dynamic vibration characteristics of the FAF. As the results of these analysis, the design improving suggestion for the FAF is put forward.


2012 ◽  
Vol 487 ◽  
pp. 894-897
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu ◽  
Qing Jun Guo

This paper introduces the FEA method for a certain type of aero-engine turbine blade and makes a vibration characteristics analysis to this aero-engine turbine blade based on this method. The vibration characteristic of this aero-engine turbine blade is studied and the natural modal of the turbine blade is calculated based on UG software. The first six natural frequencies and mode shapes are given. According to the analysis results the dynamic characteristics of the blade are discussed. The analysis method and results in this paper can be used for further study on optimal design and vibration safety verification for the blade.


2011 ◽  
Vol 418-420 ◽  
pp. 1748-1751
Author(s):  
Wei Li ◽  
Ning Liu ◽  
Ning Li ◽  
Yan Jun Liu ◽  
Liang Ma

The 3D model of gear with asymmetric profile and double pressure angles is built by the autodesk inventor software. It is imported and analyzed by the ANSYS software. Then each order natural frequencies and mode shapes are obtained. So resonance and harmful mode shapes can be avoided, and dynamic performances of gear with asymmetric profile and double pressure angles is improved. This paper has a certain reference value for the dynamic design of other types of gears.


Sign in / Sign up

Export Citation Format

Share Document