scholarly journals Analysis of Epileptic Seizures with Complex Network

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ni ◽  
Yinghua Wang ◽  
Tao Yu ◽  
Xiaoli Li

Epilepsy is a disease of abnormal neural activities involving large area of brain networks. Until now the nature of functional brain network associated with epilepsy is still unclear. Recent researches indicate that the small world or scale-free attributes and the occurrence of highly clustered connection patterns could represent a general organizational principle in the human brain functional network. In this paper, we seek to find whether the small world or scale-free property of brain network is correlated with epilepsy seizure formation. A mass neural model was adopted to generate multiple channel EEG recordings based on regular, small world, random, and scale-free network models. Whether the connection patterns of cortical networks are directly associated with the epileptic seizures was investigated. The results showed that small world and scale-free cortical networks are highly correlated with the occurrence of epileptic seizures. In particular, the property of small world network is more significant during the epileptic seizures.

Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950102
Author(s):  
DONG-YAN LI ◽  
XING-YUAN WANG ◽  
PENG-HE HUANG

The structure of network has a significant impact on the stability of the network. It is useful to reveal the effect of fractal structure on the vulnerability of complex network since it is a ubiquitous feature in many real-world networks. There have been many studies on the stability of the small world and scale-free models, but little has been down on the quantitative research on fractal models. In this paper, the vulnerability was studied from two perspectives: the connection pattern between hubs and the fractal dimensions of the networks. First, statistics expression of inter-connections between any two hubs was defined and used to represent the connection pattern of the whole network. Our experimental results show that statistic values of inter-connections were obvious differences for each kind of complex model, and the more inter-connections, the more stable the network was. Secondly, the fractal dimension was considered to be a key factor related to vulnerability. Here we found the quantitative power function relationship between vulnerability and fractal dimension and gave the explicit mathematical formula. The results are helpful to build stable artificial network models through the analysis and comparison of the real brain network.


2021 ◽  
Author(s):  
Yuhu Qiu ◽  
Tianyang Lyu ◽  
Xizhe Zhang ◽  
Ruozhou Wang

Network decrease caused by the removal of nodes is an important evolution process that is paralleled with network growth. However, many complex network models usually lacked a sound decrease mechanism. Thus, they failed to capture how to cope with decreases in real life. The paper proposed decrease mechanisms for three typical types of networks, including the ER networks, the WS small-world networks and the BA scale-free networks. The proposed mechanisms maintained their key features in continuous and independent decrease processes, such as the random connections of ER networks, the long-range connections based on nearest-coupled network of WS networks and the tendency connections and the scale-free feature of BA networks. Experimental results showed that these mechanisms also maintained other topology characteristics including the degree distribution, clustering coefficient, average length of shortest-paths and diameter during decreases. Our studies also showed that it was quite difficult to find an efficient decrease mechanism for BA networks to withstand the continuous attacks at the high-degree nodes, because of the unequal status of nodes.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yi Liang ◽  
Chunli Chen ◽  
Fali Li ◽  
Dezhong Yao ◽  
Peng Xu ◽  
...  

Epileptic seizures are considered to be a brain network dysfunction, and chronic recurrent seizures can cause severe brain damage. However, the functional brain network underlying recurrent epileptic seizures is still left unveiled. This study is aimed at exploring the differences in a related brain activity before and after chronic repetitive seizures by investigating the power spectral density (PSD), fuzzy entropy, and functional connectivity in epileptic patients. The PSD analysis revealed differences between the two states at local area, showing postseizure energy accumulation. Besides, the fuzzy entropies of preseizure in the frontal, central, and temporal regions are higher than that of postseizure. Additionally, attenuated long-range connectivity and enhanced local connectivity were also found. Moreover, significant correlations were found between network metrics (i.e., characteristic path length and clustering coefficient) and individual seizure number. The PSD, fuzzy entropy, and network analysis may indicate that the brain is gradually impaired along with the occurrence of epilepsy, and the accumulated effect of brain impairment is observed in individuals with consecutive epileptic bursts. The findings of this study may provide helpful insights into understanding the network mechanism underlying chronic recurrent epilepsy.


2002 ◽  
Vol 12 (05) ◽  
pp. 885-916 ◽  
Author(s):  
XIAO FAN WANG

Dramatic advances in the field of complex networks have been witnessed in the past few years. This paper reviews some important results in this direction of rapidly evolving research, with emphasis on the relationship between the dynamics and the topology of complex networks. Basic quantities and typical examples of various complex networks are described; and main network models are introduced, including regular, random, small-world and scale-free models. The robustness of connectivity and the epidemic dynamics in complex networks are also evaluated. To that end, synchronization in various dynamical networks are discussed according to their regular, small-world and scale-free connections.


2012 ◽  
Vol 29 (4) ◽  
pp. 048702 ◽  
Author(s):  
Qing-Bai Zhao ◽  
Xiao-Fei Zhang ◽  
Dan-Ni Sui ◽  
Zhi-Jin Zhou ◽  
Qi-Cai Chen ◽  
...  

2018 ◽  
Vol 11 (03) ◽  
pp. 1850046 ◽  
Author(s):  
Kossi Edoh ◽  
Elijah MacCarthy

Network and equation-based (EB) models are two prominent methods used in the study of epidemics. While EB models use a global approach to model aggregate population, network models focus on the behavior of individuals in the population. The two approaches have been used in several areas of research, including finance, computer science, social science and epidemiology. In this study, epidemiology is used to contrast EB models with network models. The methods are based on the assumptions and properties of compartmental models. In EB models we solve a system of ordinary differential equations and in network models we simulate the spread of epidemics on contact networks using bond percolation. We examine the impact of network structures on the spread of infection by considering various networks, including Poisson, Erdős Rényi, Scale-free, and Watts–Strogatz small-world networks, and discuss how control measures can make use of the network structures. In addition, we simulate EB assumptions on Watts–Strogatz networks to determine when the results are similar to that of EB models. As a case study, we use data from the 1918 Spanish flu pandemic and that from measles outbreak to validate our results.


2021 ◽  
Author(s):  
Alireza Fathian ◽  
Yousef Jamali ◽  
Mohammad Reza Raoufy

Abstract Alzheimer’s disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain’s functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study analyzed the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer’s disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression, and these trends behaved differently at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, The methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process.


2022 ◽  
Vol 27 (1) ◽  
pp. 1-30
Author(s):  
Mengke Ge ◽  
Xiaobing Ni ◽  
Xu Qi ◽  
Song Chen ◽  
Jinglei Huang ◽  
...  

Brain network is a large-scale complex network with scale-free, small-world, and modularity properties, which largely supports this high-efficiency massive system. In this article, we propose to synthesize brain-network-inspired interconnections for large-scale network-on-chips. First, we propose a method to generate brain-network-inspired topologies with limited scale-free and power-law small-world properties, which have a low total link length and extremely low average hop count approximately proportional to the logarithm of the network size. In addition, given the large-scale applications, considering the modularity of the brain-network-inspired topologies, we present an application mapping method, including task mapping and deterministic deadlock-free routing, to minimize the power consumption and hop count. Finally, a cycle-accurate simulator BookSim2 is used to validate the architecture performance with different synthetic traffic patterns and large-scale test cases, including real-world communication networks for the graph processing application. Experiments show that, compared with other topologies and methods, the brain-network-inspired network-on-chips (NoCs) generated by the proposed method present significantly lower average hop count and lower average latency. Especially in graph processing applications with a power-law and tightly coupled inter-core communication, the brain-network-inspired NoC has up to 70% lower average hop count and 75% lower average latency than mesh-based NoCs.


Sign in / Sign up

Export Citation Format

Share Document