scholarly journals Optimized Wideband Impedance Matching Balun for Conducting Two-Arm Antennas

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Khalid F. A. Hussein

A split coaxial balun with a step transition of the inner conductor diameter is introduced to satisfy impedance matching between unbalanced feeder and balanced antennas. The location of the step transition along the axis of the balun and the diameter change are two dimensional parameters that are not present in the conventional split coaxial balun. These additional parameters, together with the double slot width, provide more flexibility to design the balun for better impedance matching. The effects of the three dimensional parameters on the input impedance seen at the (unbalanced) coaxial line side of the balun are investigated when it is terminated with specific lumped impedance at its (balanced) split side. An optimization procedure is introduced to arrive at the balun dimensional parameters to give the best matching with specific load impedance. The proposed balun is designed to feed (balanced) two-arm antennas such as the dipole and the bowtie antenna from 50 Ω-coaxial line. The electromagnetic simulation shows that the proposed balun results in a perfect impedance matching. A comparison with the performance of the conventional split balun used to feed a dipole antenna shows that the balun proposed in the present paper gives a much lower value of the return loss at the design frequency and a wider bandwidth for VSWR ≤ 1.5. The simulation results obtained using the MoM are compared with experimental measurements showing good agreement.

2021 ◽  
Author(s):  
Ashwin Iyer ◽  
Sanghamitro Das

<div>A highly miniaturized three-dimensional spherical folded dipole antenna has been reported, for which inherent impedance matching is achieved with respect to a practical source impedance by employing a simple series-LC loading combination, thereby engineering its input impedance. In order to maximize its bandwidth, the miniaturized antenna employs a spherical helix structure as the folded arm that occupies the full volume of the corresponding Chu sphere. A bifilar (two folded arms) and a quadrifilar (four folded arms) helix loaded folded dipole antenna are designed, and full-wave simulations show that both the resulting antennas demonstrate excellent impedance matching when miniaturized by 85% in comparison to a resonant dipole operating at the same frequency. Despite the high degree of miniaturization, the resulting radiation efficiencies for the bifilar and quadrifilar antennas are found to be 87.1% and 90.6%, respectively. Furthermore, various quality-factor definitions are explored for the quadrifilar antenna, and it is observed that the resulting quality factor is around 1.83 (1.22) times that predicted by the Chu (Thal) lower bound.</div>


2021 ◽  
Author(s):  
Ashwin Iyer ◽  
Sanghamitro Das

<div>A highly miniaturized three-dimensional spherical folded dipole antenna has been reported, for which inherent impedance matching is achieved with respect to a practical source impedance by employing a simple series-LC loading combination, thereby engineering its input impedance. In order to maximize its bandwidth, the miniaturized antenna employs a bifilar spherical helix that maximizes use of the volume of the corresponding Chu sphere. Full-wave simulations show that the resulting antenna demonstrates excellent impedance matching and over 95% radiation efficiency even when miniaturized by 85% in comparison to a resonant dipole operating at the same frequency. Furthermore, various quality-factor definitions for the miniaturized spherical folded dipole antenna were estimated. It is observed that, owing to the use of proximate but non-overlapping resonances, two of these definitions fall below the Chu lower bound around the frequency of operation, resulting in a fractional bandwidth larger than that predicted by the Chu limit.</div>


2021 ◽  
Author(s):  
Ashwin Iyer ◽  
Sanghamitro Das

<div>A highly miniaturized three-dimensional spherical folded dipole antenna has been reported, for which inherent impedance matching is achieved with respect to a practical source impedance by employing a simple series-LC loading combination, thereby engineering its input impedance. In order to maximize its bandwidth, the miniaturized antenna employs a bifilar spherical helix that maximizes use of the volume of the corresponding Chu sphere. Full-wave simulations show that the resulting antenna demonstrates excellent impedance matching and over 95% radiation efficiency even when miniaturized by 85% in comparison to a resonant dipole operating at the same frequency. Furthermore, various quality-factor definitions for the miniaturized spherical folded dipole antenna were estimated. It is observed that, owing to the use of proximate but non-overlapping resonances, two of these definitions fall below the Chu lower bound around the frequency of operation, resulting in a fractional bandwidth larger than that predicted by the Chu limit.</div>


2021 ◽  
pp. 004051752110134
Author(s):  
Daniel Agu ◽  
Rachel J Eike ◽  
Allyson Cliett ◽  
Dawn Michaelson ◽  
Rinn Cloud ◽  
...  

E-textile antennas have the potential to be the premier on-body wearable sensor. Embroidery techniques, which can be applied to produce e-textile antennas, assist in large production volumes and fast production speeds. This paper focuses on the effects of three commonly used embroidery parameters, namely stitch type, conductive thread location, and stabilizer, on the performance of embroidered dipole antennas in order to determine the ideal embroidery combination for optimal antenna performance. Fifty-four dipole antenna samples were fabricated and measured at the industrial, scientific, and medical (ISM) frequency band of 2.45 GHz. The results of this study show that machine-embroidered antenna designs with satin stitches resonate at a lower frequency and exhibit a lower transmission gain compared with those made with contour stiches, and the conductive thread location in the bobbin location plus the use of a water-soluble stabilizer can help improve impedance matching.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Maria Jose Segovia ◽  
Daniel Diaz ◽  
Katarzyna Slezak ◽  
Felipe Zuñiga

AbstractTo analyze the process of subduction of the Nazca and South American plates in the area of the Southern Andes, and its relationship with the tectonic and volcanic regime of the place, magnetotelluric measurements were made through a transversal profile of the Chilean continental margin. The data-processing stage included the analysis of dimensional parameters, which as first results showed a three-dimensional environment for periods less than 1 s and two-dimensional for periods greater than 10 s. In addition, through the geomagnetic transfer function (tipper), the presence of structural electrical anisotropy was identified in the data. After the dimensional analysis, a deep electrical resistivity image was obtained by inverting a 2D and a 3D model. Surface conductive anomalies were obtained beneath the central depression related to the early dehydration of the slab and the serpentinization process of the mantle that coincides in location with a discontinuity in the electrical resistivity of a regional body that we identified as the Nazca plate. A shallow conductive body was located around the Calbuco volcano and was correlated with a magmatic chamber or reservoir which in turn appears to be connected to the Liquiñe Ofqui fault system and the Andean Transverse Fault system. In addition to the serpentinization process, when the oceanic crust reaches a depth of 80–100 km, the ascending fluids produced by the dehydration and phase changes of the minerals present in the oceanic plate produce basaltic melts in the wedge of the subcontinental mantle that give rise to an eclogitization process and this explains a large conductivity anomaly present beneath the main mountain range.


Author(s):  
Deepika Saini ◽  
Sanoj Kumar ◽  
Manoj K. Singh ◽  
Musrrat Ali

AbstractThe key job here in the presented work is to investigate the performance of Generalized Ant Colony Optimizer (GACO) model in order to evolve the shape of three dimensional free-form Non Uniform Rational B-Spline (NURBS) curve using stereo (two) views. GACO model is a blend of two well known meta-heuristic optimization algorithms known as Simple Ant Colony and Global Ant Colony Optimization algorithms. Basically, the work talks about the solution of NURBS-fitting based reconstruction process. Therefore, GACO model is used to optimize the NURBS parameters (control points and weights) by minimizing the weighted least-square errors between the data points and the fitted NURBS curve. The algorithm is applied by first assuming some pre-fixed values of NURBS parameters. The experiments clearly show that the optimization procedure is a better option in a case where good initial locations of parameters are selected. A detailed experimental analysis is given in support of our algorithm. The implemented error analysis shows that the proposed methodology perform better as compared to the conventional methods.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1581
Author(s):  
Alfonso Hernández ◽  
Aitor Muñoyerro ◽  
Mónica Urízar ◽  
Enrique Amezua

In this paper, an optimization procedure for path generation synthesis of the slider-crank mechanism will be presented. The proposed approach is based on a hybrid strategy, mixing local and global optimization techniques. Regarding the local optimization scheme, based on the null gradient condition, a novel methodology to solve the resulting non-linear equations is developed. The solving procedure consists of decoupling two subsystems of equations which can be solved separately and following an iterative process. In relation to the global technique, a multi-start method based on a genetic algorithm is implemented. The fitness function incorporated in the genetic algorithm will take as arguments the set of dimensional parameters of the slider-crank mechanism. Several illustrative examples will prove the validity of the proposed optimization methodology, in some cases achieving an even better result compared to mechanisms with a higher number of dimensional parameters, such as the four-bar mechanism or the Watt’s mechanism.


Author(s):  
R.J. Punith Gowda ◽  
R. Naveenkumar ◽  
J.K. Madhukesh ◽  
B.C. Prasannakumara ◽  
Rama Subba Reddy Gorla

The flow-through various disk movement has wide range of applications in manufacturing processes like, computer storage equipment’s, rotating machines, electronic and various types of medical equipment’s. Inspired from these applications, here we scrutinised the consequences of homogeneous-heterogeneous reactions and uniform heat source/sink on the three-dimensional (3D) hybrid SWCNT-MWCNT’s flow on time dependent moving upward/downward rotating disk. The renowned innovation of this paper is the application of the hybrid nanofluid made up of SWCNT and MWCNT’s. Heat generation/absorption effect for the disk that does not move up or down creates a dual flow on the disk. Alternatively, the rotation and upright motion of the disk creates a 3D flow on the surface which has not been considered in the open literature. The modelled PDE’s are reduced in to ODE’s by opting suitable similarity variables and boundary constraints. Here, we used RKF-45 method to obtain the numerical approximations by adopting shooting technique. The analysis of rate of heat transfer is done through graphs. Further, change in velocity, thermal and concentration profiles for various non-dimensional parameters are deliberated briefly and illustrated with the help of suitable plots. The results reveal that, the, rise in values of homogeneous and heterogeneous reaction parameters improve the rate of reaction which results in reduction of the distribution rate and diminishes the concentration gradient. An increase in expansion/contraction parameter enhances the velocity and thermal gradients.


Sign in / Sign up

Export Citation Format

Share Document