scholarly journals Development and Evaluation of Taste Masked Granular Formulation of Satranidazole by Melt Granulation Technique

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Harshal Ashok Pawar ◽  
Pooja Rasiklal Joshi

Drugs from nitroimidazole category are generally bitter in taste. Oral formulation with bitter taste is not palatable. Geriatrics and pediatrics patients usually suffer from swallowing difficulties. Many other patients in some disease conditions avoid swallowing tablets. Satranidazole is a new nitro-imidazole derivative with bitter taste and is available in market as film coated tablet. The purpose of this research was to mask the bitter taste of Satranidazole by coating complexation with low melting point wax and Eudragit EPO. Different types of wax (glyceryl monostearate, stearic acid and cetyl alcohol) were tried for taste masking. The drug to stearic acid ratio 1 : 2 was found to be optimum on the basis of taste evaluation and in vitro release. The formulated granules were found to possess good flow property. FTIR studies confirmed that there was no interaction between drug and excipients. Scanning Electron Microscopy of drug and the optimized batch of granules was performed. The in vitro release of drug from granules was compared with marketed tablet formulation. The taste masked granules of optimized batch showed 87.65% release of drug in 1 hr which is comparable to that of marketed tablet formulation.

2020 ◽  
Vol 10 (5) ◽  
pp. 149-158
Author(s):  
Pintu Dhar ◽  
Himangshu Sarma ◽  
Hemanta Kumar Sharma

Background: The solid oral dosage forms containing bitter drugs need improved palatability for administration. Formulation scientists have given attention to the improvement of taste masking technologies and utilised various strategies. Objective: The present work aimed to mask the bitter taste of Promethazine Hydrochloride by formulating Oral Dispersible Tablets using Okra mucilage as a taste-masking agent.  Methods: The Okra mucilage was extracted from Okra by the aqueous extraction process. An emulsion solvent diffusion technique was used for masking the bitter taste of Promethazine Hydrochloride by using Okra mucilage. The Oral Dispersible Tablet was prepared by the wet granulation method. The mucilage and the formulation were characterized and evaluated by standard methods and protocols. Results: Taste masking of the bitter drug was successfully achieved by Okra mucilage. The DSC and FTIR study revealed that the drug molecule was compatible with okra mucilage and drug entrapment efficacy was found to be 94.76%. The palatability test asserted that masking of the bitter taste of the drug.  The In vitro drug release study showed that the F7 tablet batch has a better drug release rate and followed non- fickian mechanism of drug release. Conclusion: Thus, taste masking with Okra mucilage was successful and this opens opportunities for application of common edible substances in formulation development. Keywords: Fast disintegrating tablet; Natural polymer; Mouth dissolving tablet; Promethazine Hydrochloride; Taste masking


2020 ◽  
Vol 11 (03) ◽  
pp. 399-403
Author(s):  
Pavani Sriram ◽  
Ashish Suttee ◽  
Marasakatla Z

The anti-protozoal drug, metronidazole, is developed as an oral disintegrating tablet (ODT) to treat amoebiasis and to bypass hepatic metabolism. The work aimed to prepare, taste-masking oral disintegrating tablets of metronidazole using different proportions of the drug and disintegrants in various ratios by an effervescent method. The ODT was developed by direct compression with various concentrations of super disintegrating agents (1-7%). In this technique, sodium bicarbonate and tartaric acid were used to generate effervescence. The formulated tablets were assessed for physicochemical characteristics. The results of FTIR spectroscopy indicated the stable character of metronidazole. In vitro studies revealed that batch F6 was having a 97.65% cumulative amount of drug release at 20th minute compared to other formulations. Due to the effervescent method, there was a significant increase in drug release, seen at the 1:1.5 ratio. Taste evaluation studies were conducted on healthy human volunteers.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 779 ◽  
Author(s):  
Pattaraporn Panraksa ◽  
Kasidech Boonsermsukcharoen ◽  
Kyu-Mok Hwang ◽  
Eun-Seok Park ◽  
Pensak Jantrawut

The purpose of this study was to mask the bitter taste of nizatidine (NZD) using cation-exchange resins. Amberlite IRP-69 and Dowex-50 containing cross-linked polystyrene backbones were used. The drug resin complexes were prepared by batch process using drug: resin ratios of 1:1, 1:3, and 1:5. The optimum drug: resin ratio and the time required for maximum percentage drug loading into the complexes were determined. The selected drug-resin complexes were evaluated for morphology, drug release, and taste. The NZD-Dowex complex was obtained at a drug: resin ratio of 1:5 using a stirring time of 1 h in order to get 100% loading of NZD. The NZD-Dowex complex had a spherical shape and smooth texture similar to Dowex resin. The NZD-Dowex complex with a ratio of 1:5 showed that in vitro drug release of 4.27% at 5 min in simulated salivary fluid of pH 6.8 and 99.67% at 1 h in simulated gastric fluid of pH 1.2. NZD’s bitter taste was effectively masked when it formed a complex with Dowex at a ratio of 1:5. This was proved by an electronic tongue and human test panel.


2011 ◽  
Vol 47 (2) ◽  
pp. 323-330 ◽  
Author(s):  
Yasser Shahzad ◽  
Syed Nisar Hussain Shah ◽  
Shabbar Atique ◽  
Muhammad Tayyab Ansari ◽  
Farooq Bashir ◽  
...  

The purpose of this study was to mask the bitter taste imparted by dihydroartemisinin (DHA) by the use of different coating materials. Trial-1 and trial-2 were conducted to prepare the DHA granules. The granules produced from trial-1 were irregular in shape and smaller in size while the trial-2 granules were more regular and larger in size. The granules obtained from both trials were then coated with two different coating methods, namely A and B, depending upon coating material. The trial-2 granules showed better flow properties than trial-1 granules. In vitro dissolution studies in phosphate buffer at pH 6.8 revealed that granules of trial-2B released only 34% ± 3 DHA in two minutes compared with trial-1A (57% ± 2), trial-1B (48% ± 2) and trial-2A (53% ± 7). The pleasant taste perception (PTP) test also confirmed the taste masking efficacy of trial-2B (P < 0.05). Scanning electron microscopy (SEM) revealed the more regular and smooth surface of trial-2B granules. In addition, the differential thermal and thermogravimetric analysis (TG-DTA) confirmed no interaction between the materials and pure DHA. DHA has shown its characteristic peaks in the x-ray diffraction (XRD) patterns which were also prominent in all the granules. In conclusion, the granules obtained from trial-2B displayed considerable decrease in the bitter taste of DHA thereby fulfilling the purpose of this study.


2020 ◽  
pp. 25-32
Author(s):  
Mariya Anurova ◽  
Elena Bakhrushina ◽  
Anna Moiseyeva ◽  
Ivan Krasnyuk

Patient compliance of drug therapy is the key factor in achieving the pharmaceutical effect. Taste masking is particularly important in pediatrics and geriatrics because the unpleasant taste negatively affects drug uptake. Patient compliance can be improved through balanced organoleptic properties of medicines. It is particularly important to choose optimal correction method for medicines with high concentration of the active substance. Hopantenic acid has been chosen as a model drug due to its bitter taste. Taste masking technologies for creating a new dosage form with optimal organoleptic properties are proposed in the article. The objective is to achieve an experimentally justified choice of technological approach to masking bitter taste of a substance and to create a new dosage form on its basis. Materials and methods. Alternative technologies were considered to solve this problem: granulation, creation of complexes with ion-exchange resins, introduction of a gel composition and taste-masking using sweeteners. Organoleptic properties in dry compositions (pure substance of hopantenic acid, granulate and resinate based on it), and also after preparation of liquid dosage forms and incorporation them into gel, were evaluated by A. I. Tentsova method. Choice of sweetener and its concentration to achieve an optimally balanced taste took place at the final stage. Hopantenic acid was chosen as a model substance. Hopantenic acid is a nootropic drug stimulating cognitive functions, nervous system, enhancing intellectual functioning, decreasing nervous system activity, with anticonvulsant action. The main therapeutic indications are mental retardation, dementia, epilepsy. Results and discussion. The study has shown that optimal technology for masking unpleasant taste of hopantenic acid is its introduction into a gel composition, and a promising dosage form is an oral gel. Compri-Zucker G sweetener (Südzucker АG, Germany) in concentration of 5 % has been chosen to create pleasant taste due to its highest taste rating. Conclusion. It has been determined as a result of the study that oral gel with active drug concentration of 5 % and sweetener concentration of 5 % has optimal organoleptic properties. Thus, this combination of active and additional substances can be considered the most perspective for developing a new dosage form of a medicine.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
Sudarshan Singh ◽  
Ayaz Ahmad ◽  
Sunil Bothara B

The present study was taken to formulate and evaluate mucilage obtained from Buchanania lanzan spreng seeds (BL) belonging to family anacardiacea for oral mucoadhesive drug delivery system containing losartan potassium. Physiochemical characteristics of mucilage, such as swelling index, microbial count, viscosity, hydration capacity, flow property, and pH were studied. The mucilage was evaluated for its mucoadhesive properties in compressed tablet, containing losartan potassium. Granules were prepared by wet granulation process using polyvinylpyrrolidone as binding agent. Mucilage was used in four different concentrations i.e., 21, 42 and 55% w/w. The tablet were prepared and evaluated for its physical property. Further, in vitro dissolution and swelling index was determined. The property of bioadhesive strength of isolated mucilage was compared with Guar gum and HPMC E5LV, which was used as standard mucoadhesive agent concentration. Bioadhesive strength of the tablet was measured on the modified physical balance. Result revealed that tablets had good physiochemical properties, and drug release was retarded as concentration of mucilage was increased. The force of adhesion was obtained 0.1238N, 0.2822N, 0.5175N, 0.8679N and 0.3983N respectively for F1, F2, F3, F4 and F5. Formulations were subjected for study the effect of agitation at different rpm. Formulation showed relative effect on release of drug from formulation. All the formulations were subjected to stability studies for three months, all formulations showed stability with respect to release pattern. In conclusions, these results indicate that the seed mucilage of BL can be a suitable excipient for oral mucoadhesive drug delivery systems.  


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 162
Author(s):  
Enrique Gomez ◽  
Nuria Canela ◽  
Pol Herrero ◽  
Adrià Cereto ◽  
Isabel Gimeno ◽  
...  

This work describes the use of mass spectrometry-based metabolomics as a non-invasive approach to accurately predict birth prior to embryo transfer (ET) starting from embryo culture media and plasma recipient. Metabolomics was used here as a predictive platform. Day-6 in vitro produced embryos developed singly in modified synthetic oviduct fluid culture medium (CM) drops for 24 h were vitrified as Day-7 blastocysts and transferred to recipients. Day-0 and Day-7 recipient plasma (N = 36 × 2) and CM (N = 36) were analyzed by gas chromatography coupled to the quadrupole time of flight mass spectrometry (GC-qTOF). Metabolites quantified in CM and plasma were analyzed as a function to predict pregnancy at Day-40, Day-62, and birth (univariate and multivariate statistics). Subsequently, a Boolean matrix (F1 score) was constructed with metabolite pairs (one from the embryo, and one from the recipient) to combine the predictive power of embryos and recipients. Validation was performed in independent cohorts of ETs analyzed. Embryos that did not reach birth released more stearic acid, capric acid, palmitic acid, and glyceryl monostearate in CM (i.e., (p < 0.05, FDR < 0.05, Receiver Operator Characteristic—area under curve (ROC-AUC)> 0.669). Within Holstein recipients, hydrocinnamic acid, alanine, and lysine predicted birth (ROC-AUC > 0.778). Asturiana de los Valles recipients that reached birth showed lower concentrations of 6-methyl-5-hepten-2-one, stearic acid, palmitic acid, and hippuric acid (ROC-AUC > 0.832). Embryonal capric acid and glyceryl-monostearate formed F1 scores generally >0.900, with metabolites found both to differ (e.g., hippuric acid, hydrocinnamic acid) or not (e.g., heptadecanoic acid, citric acid) with pregnancy in plasmas, as hypothesized. Efficient lipid metabolism in the embryo and the recipient can allow pregnancy to proceed. Changes in phenolics from plasma suggest that microbiota and liver metabolism influence the pregnancy establishment in cattle.


Author(s):  
Mehmet Hakan Ozdener ◽  
Andrew I. Spielman ◽  
Paul M. Wise
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document