scholarly journals Arbuscular Mycorrhizal Colonization Enhanced Early Growth ofMallotus paniculatusandAlbizia samanunder Nursery Conditions in East Kalimantan, Indonesia

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Dewi Wulandari ◽  
Saridi ◽  
Weiguo Cheng ◽  
Keitaro Tawaraya

Forest over logging, forest fire, forest conversion, and opencast mining have promoted deforestation in Indonesia, and reforestation is needed immediately. However, reforestation is limited by low seedling quality and production, and slow seedling growth in nurseries. Native tropical tree and fast-growing species,Mallotus paniculatusandAlbizia saman, are potential to promote the first rotation of reforestation. Arbuscular mycorrhizal (AM) fungi are known to promote nutrient uptake and plant growth. We examined the effects of two native AM fungi,Gigaspora decipiensandGlomus clarum, on the growth ofM. paniculatusandA. samanseedlings under nursery conditions. At harvest, after six months, we determined AM colonization, shoot dry weight, and shoot N and P concentration. Approximately 90% and 50% ofM. paniculatusandA. samanroots, respectively, were colonized by AM fungi, without any difference between the inoculation treatments.G. decipiensandG. clarumincreased shoot height, leaf number, shoot dry weight, and shoot N and P uptake of both species. A positive correlation was observed between N and P uptake and shoot dry weight. These results suggest that AM fungi are effective in accelerating nutrient uptake and plant growth, which will, in turn, promote reforestation and sustainable forest timber production.

1998 ◽  
Vol 131 (1) ◽  
pp. 79-85 ◽  
Author(s):  
O. FAGBOLA ◽  
O. OSONUBI ◽  
K. MULONGOY

A field trial on alley-cropping was conducted at the University of Ibadan research farm in the 1990/91 cropping season to assess the contributions of arbuscular mycorrhizal (AM) fungi and hedgerow woody legumes to the yield and nutrient uptake of cassava (Manihot esculenta Crantz) as an intercrop in an infertile soil. The trial also investigated the influence of AM fungi on the interplanting of a non-nodulating woody legume Senna siamea (syn. Cassia siamea) with a nodulating woody legume (Leucaena leucocephala).AM contributions to cassava were greater than the hedgerow contributions, which demonstrated that AM associations are an essential component in the nutrition of cassava. In contrast to cassava, AM inoculation only influenced the leaf dry weight and uptake of nutrients of non-interplanted woody legumes but not the above-ground biomass and P uptake of interplanted woody legumes. However, non-inoculated interplanted Leucaena benefited more from indigenous AM fungi than the competing Senna. The negative contributions to the nutrient uptake (K, Ca and Mg) of cassava by hedgerows and the lack of response to AM inoculation in interplanted hedgerow woody legumes could be attributed to root competition among the different plant species growing in close proximity to each other. The present results show that cassava benefits more from AM association than Leucaena which in turn benefits more than Senna in an alley-cropping system.


Mycorrhiza ◽  
2021 ◽  
Author(s):  
Rosolino Ingraffia ◽  
Sergio Saia ◽  
Antonio Giovino ◽  
Gaetano Amato ◽  
Giuseppe Badagliacca ◽  
...  

AbstractMany aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants.


2013 ◽  
Vol 18 (1) ◽  
pp. 59 ◽  
Author(s):  
Sri Wilarso Budi ◽  
Fiona Christina

Coal powder waste application on low nutrient media is expected to be able to increase plant growth and to improve Arbuscular mycorrhizal fungi (AMF) development. The objective of this research was to determine the effect of coal waste powder on the growth of Anthocephallus cadamba Jack and AMF development grown on ultisol soil. Two factors in a completely randomised experimental design was conducted under greenhouse conditions and Duncan Multiple Range Test was used to analyse of the effect the treatment. The first factor was ultisol soil ammended with coal waste powder (control, soil amanded with coal waste 5%, soil amanded with coal waste 10% and soil amanded with coal waste 15%) and the second factor was AMF inoculation (uninoculated control, inoculated with Gigaspora margarita). Plant height, diameter, shoot dry weight, percentage of AMF colonization and nutrient uptake were measured in this experiment. Results of this study showed that coal amendment and AMF when applied separately significantly increased height, diameter, shoot dry weight, root dry weight and nutrient uptake of 12 weeks A. cadamba seedling, but when the coal waste powder and AMF were combined the plant growth parameters were lower than those applied separately but significantly higher than control. The application of coal waste powder or AMF in ultisol soil could increase A. cadamba growth and development.[How to Cite : Budi SW and F Christina. 2013. Coal Waste Powder Amendment and Arbuscular Mycorrhizal Fungi Enhance the Growth of Jabon (Anthocephalus cadamba Miq) Seedling in Ultisol Soil Medium. J Trop Soils, 18 (1): 59-66. doi: 10.5400/jts.2013.18.1.59][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.59]


Biocelebes ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 1-9
Author(s):  
Wahyu Harso ◽  
Isna Isna ◽  
Yusran Yusran

Arbsucular mycorrhizal fungi promote plant growth by enhancing mineral uptake. Contribution degree of arbuscular mycorrhizal fungi to promote plant growth depend on species of plant-fungus association. The aim of this study was to compare the ability of three species of Glomus to promote maize plant growth. Maize plants were inoculated with 20 g inoculum of either Glomus deserticola, Glomus etunicatum, or Glomus clorum.  Inoculum was soil containing spore, hyphae and infected root. Maize plants without addition inoculum were also used as a control. Water availability in the soil as growing medium was maintained on 40% field capacity. The results showed that addition of inoculum from three species of Glomus increased average of maize plant shoot dry weight  although there was no statisticaly significant differences.  Maize plant inoculated with G. clorum had higher shoot dry weight than maize plant inoculated either with G. etunicatum or G. deserticola while root colonization by G. clorum was lowest.


2002 ◽  
Vol 82 (3) ◽  
pp. 272-278 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
A. Elmi ◽  
C. Costa ◽  
B. Ma ◽  
...  

Little attention has been paid to the effect of arbuscular mycorrhizal (AM) fungi on the uptake of nutrients that move mainly by mass flow. The objective of this study was to assess the possible contribution of indigenous AM fungi to the K, Ca and Mg nutrition of maize (Zea mays L.) as influenced by soil P levels and its impact on plant dry mass. The field experiment had a split plot design with four replicates. Treatments included soil fumigation status (fumigation and non-fumigation) and three levels of P fertilization (0, 60 and 120 kg P2O5 ha-1) in a loamy sand soil in 1997 and a fine sandy loam soil in 1998. Soil fumigati on with Basamid® was used to suppress indigenous AM fungi. Plants were sampled at four different growth stages (6-leaf stage, 10-leaf stage, tasseling and silking). Soil fumigation decreased shoot dry weight, but P fertilization increased shoot dry weight at most sampling times. When no P fertilizer was added, fumigation in the loamy sand soil reduced shoot K and Ca concentrations while, in contrast, in the fine sandy loam soil only Mg concentration was reduced by soil fumigation. The concentration of K in maize shoots was positively correlated (P < 0.05) with extraradicular hyphal length in both soils. The correlation between the abundance of extraradicular hyphae and the concentrations of Ca and Mg in maize shoots was significant only for soils where available Ca or Mg was relatively low. Arbuscular mycorrhizal fungi could increase corn biomass production and K, Ca and Mg uptake in soil low in these elements and low in P. These results indicate that the contribution of mycorrhizae to maize K, Ca and Mg nutrition can be significant in a field situation and that the extent of this contribution depends on the availability of these nutrients and of P in soils. Key words: Arbuscular mycorrhizal fungi, soil fumigation, extraradicular hyphae, uptake of K, Ca, and Mg, soil P levels, maize


2013 ◽  
Vol 37 (4) ◽  
pp. 635-644 ◽  
Author(s):  
FE Elahi ◽  
MAU Mridha ◽  
FM Aminuzzaman

Mycorrhizal fungi have their most significant effect on plant growth and have shown to reduce arsenic contamination to chili. The present experiment was carried out to determine the influence of AMF inoculation on plant growth, nutrient uptake, arsenic toxicity, and chlorophyll content of chili grown in arsenic amended soil. Chili was grown in arsenic amended soils with or without mycorrhizal inoculation. Three levels of arsenic concentrations (10 ppm, 100 ppm, and 500 ppm) were used. The seed germination was affected more by the two treatment variables. Root length, shoot height, root fresh weight, shoot fresh weight, root dry weight, shoot dry weight were higher in AMF inoculated plants in comparison to their respective treatments and decreased significantly with the increase rate of arsenic concentrations. Less arsenic content, higher chlorophyll, and nutrient uptake were recorded in mycorrhiza inoculated chili plants. The present findings indicated that AMP inoculation not only minimize arsenic toxicity, but also can increase growth and nutrient uptake of chili. DOI: http://dx.doi.org/10.3329/bjar.v37i4.14388 Bangladesh J. Agril. Res. 37(4): 635-644, December 2012


2016 ◽  
Vol 6 (01) ◽  
pp. 5204 ◽  
Author(s):  
Sharanappa Jangandi ◽  
Chaitra B. Negalur* ◽  
Mr. Narayan ◽  
H. C. Lakshman

The effect of phosphorus solubilizing bacteria Bacillus polymyxa and AM-mycorrhizal fungi Rhizophagus fasciculatus with and without rock phosphate treatments on growth of Terminalia paniculata and T. tomentosa were studied in nursery. The results showed that the combined inoculation of both PSB, AM fungi and rock phosphate produced vigorous plant growth of tree seedlings for quick planting. The experiments clearly demonstrated that the combined inoculation of PSB and AM fungi brought marked increase in plant growth, dry matter, and P uptake when, compared to individual inoculants or non-inoculated plants. The increase in growth was attributed to the increase in P uptake in shoots of the seedlings. The results indicated that both organisms have synergistic effect with additional 250 mg RP/kg rock phosphate treatment for T.paniculata Roth. and 150 mgRP/kg for T.tomentosa W.& A. in green house conditions.


2016 ◽  
Vol 22 ◽  
pp. 45-51
Author(s):  
KP Gabriel ◽  
HC Lakshman ◽  
Tanzima Yeasmin

Context: Arbuscular-Mycorrhizal fungi colonization in roots of many plants promotes the increased nutrient uptake especially the phosphorus from phosphorus deficient soil.Objective: To compare the efficacy of different concentration of recommended dosages of super phosphate fertilizers with inoculation of AM fungi to evaluate growth, nutrients uptake on Niger plant (Guizotia abyssinica (L.f) Cass. var, RCR-18).Materials and Methods: The effect of two Arbuscular mycorrhizal fungi Scutellospora nigra and Glomus mosseae with 4 different dosage (25%, 50%, 75%, 100% ) of superphosphate (P2O5) was treated on growth yield and nutrient uptake in Niger plant (Guizotia abyssinica (L.f) Cass. var, RCR-18) was evaluated under greenhouse conditions. Pots were watered they were harvested once in 30 days intervals. For 90 days the following readings viz., plant height, root length, biomass, grains yield, percent root colonization, spore number macro-micro nutrients contents in shoots and roots were determined.Results: Scutellospora nigra with 50% RDSP/kg showed a significant increase in the plant growth biomass of shoot and root of Guizotia abyssinica (L.f) Cass. var, RCR-18. Percent root colonization, seed number and N, P, K and Zn, Mg uptake in shoot and root.Conclusion: Overall, our results clearly suggest that synergistic and additive mechanisms involved can enhances the plant growth, nutrient uptake and adaptation to unfavorable drought soil conditions.J. bio-sci. 22: 45-51, 2014


2021 ◽  
Vol 17 (2) ◽  
pp. 80-85
Author(s):  
Reginawanti Hindersah ◽  
Anny Yuniarti ◽  
Hidiyah Ayu Ratna Ma’rufah

Nitrogen-fixing Azotobacter synthesizes exopolysaccharide, which is important among other to improve aggregate stability and hence nutrients uptake. A pot experiment has been conducted to determine the effect of exopolysaccharide-producing Azotobacter and organic matter on nitrogen, phosphor, and potassium uptake by the shoot of sorghum (Sorghum bicolor (L.) Moench), and plant growth. The pot experiment was setup in randomized block design which test eight combination treatments of Azotobacter isolates (AS5, AS6, and AS5 + AS6) and organic matter application (with and without 20 t ha-1 of cow manure). The result showed dual inoculation of Azotobacter AS5 and AS6 inoculation combined with cow manure application increased N and P uptake. The dual inoculation treatment did not affect root length; but increased the shoot height and dry weight when accompanied by the application of cow manure. The ratio of root and shoot dry weight was not influenced by single or dual Azotobacter inoculation with or without organic matter.


2016 ◽  
Vol 8 (1) ◽  
pp. 358-367 ◽  
Author(s):  
Santosh Chandra Bhatt ◽  
Sovan Debnath ◽  
Navneet Pareek

A field experiment was carried out with an aim to study the influence of two strains of Penicillium bilaii (PB -201 and PB-208) inoculation along with superphosphate application on growth, yield and P uptake of wheat (cv. PBW-343) and, also to examine the inoculation effect on P availability, forms of P and soil properties in Mollisols of Uttarakhand, India. The results showed that both strains of P. bilaii effectively solubilized tri-calcium phosphate in Pikovskaya agar medium, which was much higher over native fungal isolates. Wheat seed inoculation with P. bilaii strains along with superphosphate levels significantly influenced shoot height, shoot dry weight, number of total and effective tillers, yield attributes, yield components, tissue content and uptake of P. The treatment T7 (P. bilaii, strain PB-208 + 50% P) has resulted into the highest amount of shoot height (87.9 cm at 90 DAS), shoot dry weight (1.5 and 3.8 g at 60 and 90 DAS, respectively), grain (66.8 q ha-1) and straw yield (42.7 q ha-1) and P uptake (26.5 kg ha-1). The Olsen-P, organic carbon, dehydrogenase activity and fungal populations also increased in soil inoculated with P. bilaii strains combined with superphosphate application compared to the control soil. The conjoint use of the fungal strains with or, without P fertilization has developed an antagonistic interaction that has caused decline in yield, tissue content and uptake of P and its availability in soil. In conclusion, it is possible to reduce the rate of soluble P-fertilizer added by 50% without reducing yield, if wheat is inoculated with P-solubilizing fungi like P. bilaii.


Sign in / Sign up

Export Citation Format

Share Document