scholarly journals A Novel Method for Target Navigation and Mapping Based on Laser Ranging and MEMS/GPS Navigation

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianhua Cheng ◽  
Rene Landry ◽  
Daidai Chen ◽  
Dongxue Guan

Making the sensor rigidly mounted in the target is the common characteristic of conventional navigation system. However, it is difficult or impossible to realize that for special applications such as the positioning of hostile aircraft. A novel new algorithm for target navigation and mapping is designed based on the position, attitude, and ranging information provided by laser distance detector (electronic distance measuring, LDS) and MEMS/GPS navigation, which can solve problem of the target navigation and mapping without any sensor in the target. The detailed error analysis shows that attitude error of MEMS/GPS is the main error source which dominated the accuracy of the algorithm. Based on the error analysis, a calibration algorithm is designed so as to improve the accuracy to a large extent. The result shows that, by using this new algorithm, the performance of target positioning can be efficiently improved, and the positioning error is less than 2 meters for the target within 1 kilometer range.

Navigation ◽  
2007 ◽  
Vol 54 (3) ◽  
pp. 177-188 ◽  
Author(s):  
XIAOJI NIU ◽  
SAMEH NASSAR ◽  
NASER EL-SHEIMY

2009 ◽  
Vol 14 (4-6) ◽  
pp. 69-82 ◽  
Author(s):  
J. Kozak ◽  
K. Krysztoforski ◽  
T. Kroll ◽  
S. Helbig ◽  
M. Helbig

2019 ◽  
Vol 30 (12) ◽  
pp. 1950104 ◽  
Author(s):  
Haijuan Yang ◽  
Jianjun Cheng ◽  
Mingwei Leng ◽  
Xing Su ◽  
Wenbo Zhang ◽  
...  

Communities in networks expose some intrinsic properties, each of them involves some influential nodes as its cores, around which the entire community grows gradually; the more the common neighbors that exist between a pair of nodes, the larger the possibility of belonging to the same community; the more the neighbors of any one node belong to a community, the larger the possibility that node belongs to that community too. In this paper, we present a novel method, which makes full utilization of these intrinsic properties to detect communities from networks. We iteratively select the node with the largest degree from the remainder of the network as the first seed of a community, then consider its first- and second-order neighbors to identify other seeds of the community, then expand the community by attracting nodes whose large proportion of neighbors have been in the community to join. In this way, we obtain a series of communities. However, some of them might be too small to make sense. Therefore, we merge some of the initial communities into larger ones to acquire the final community structure. In the entire procedure, we try to keep nodes in every community to be consistent with the properties as possible as we can, this leads to a high-quality result. Moreover, the proposed method works with a higher efficiency, it does not need any prior knowledge about communities (such as the number or the size of communities), and does not need to optimize any objective function either. We carry out extensive experiments on both some artificial networks and some real-world networks to testify the proposed method, the experimental results demonstrate that both the efficiency and the community-structure quality of the proposed method are promising, our method outperforms the competitors significantly.


2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Fenny - Thresia

The purpose of this study was study analyze the students’ error in writing argumentative essay. The researcher focuses on errors of verb, concord and learner language. This study took 20 students as the subject of research from the third semester. The data took from observation and documentation. Based on the result of the data analysis there are some errors still found on the student’s argumentative essay in English writing? The common errors which repeatedly appear are verb. The second is concord, and learner languages are the smallest error. From 20 samples that took, the frequency the errors of verb are 12 items (60%), concord are 8 items (40%), learner languages are 7 items (35%). As a result, verb has the biggest number of common errors.


2014 ◽  
Vol 556-562 ◽  
pp. 3313-3316
Author(s):  
Hao Ran Song

Currently, GPS global positioning system has been in the areas of precise positioning, navigation, timing has been widely used. By GPS-OEM combined with computer and communications technologies, users are able to easily and independently developed to meet the specific needs of GPS systems. Design system based on GPS navigation navigation system requirements package, in-depth study of the main factors affecting the precision of navigation. Several factors made corresponding solutions, implements navigation navigation system the main functions of the software.


2018 ◽  
Vol 71 (6) ◽  
pp. 1553-1566
Author(s):  
Jiazhen Lu ◽  
Lili Xie

This paper proposes a dynamic aided inertial navigation method to improve the attitude accuracy for ocean vehicles. The proposed method includes a dynamic identification algorithm and the utilisation of dynamic constraints to derive additional observations. The derived additional observations are used to update the filters and limit the attitude error based on the dynamic knowledge. In this paper, two dynamic conditions, constant speed cruise and quasi-static, are identified and corresponding additional velocity and position observations are derived. Simulation and experimental results show that the proposed method can improve and guarantee the accuracy of the attitude. The method can be used as a backup method to bridge external information outages or unavailability. Both the features of independence of external support and integrity of the Inertial Navigation System (INS) are enhanced.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 364 ◽  
Author(s):  
Ming Xia ◽  
Chundi Xiu ◽  
Dongkai Yang ◽  
Li Wang

The pedestrian navigation system (PNS) based on inertial navigation system-extended Kalman filter-zero velocity update (INS-EKF-ZUPT or IEZ) is widely used in complex environments without external infrastructure owing to its characteristics of autonomy and continuity. IEZ, however, suffers from performance degradation caused by the dynamic change of process noise statistics and heading estimation errors. The main goal of this study is to effectively improve the accuracy and robustness of pedestrian localization based on the integration of the low-cost foot-mounted microelectromechanical system inertial measurement unit (MEMS-IMU) and ultrasonic sensor. The proposed solution has two main components: (1) the fuzzy inference system (FIS) is exploited to generate the adaptive factor for extended Kalman filter (EKF) after addressing the mismatch between statistical sample covariance of innovation and the theoretical one, and the fuzzy adaptive EKF (FAEKF) based on the MEMS-IMU/ultrasonic sensor for pedestrians was proposed. Accordingly, the adaptive factor is applied to correct process noise covariance that accurately reflects previous state estimations. (2) A straight motion heading update (SMHU) algorithm is developed to detect whether a straight walk happens and to revise errors in heading if the ultrasonic sensor detects the distance between the foot and reflection point of the wall. The experimental results show that horizontal positioning error is less than 2% of the total travelled distance (TTD) in different environments, which is the same order of positioning error compared with other works using high-end MEMS-IMU. It is concluded that the proposed approach can achieve high performance for PNS in terms of accuracy and robustness.


Sign in / Sign up

Export Citation Format

Share Document