scholarly journals Coupling Metallic Nanostructures to Thermally Responsive Polymers Allows the Development of Intelligent Responsive Membranes

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
J. Rubén Morones-Ramírez

Development of porous membranes capable of controlling flow or changing their permeability to specific chemical entities, in response to small changes in environmental stimuli, is an area of appealing research, since these membranes present a wide variety of applications. The synthesis of these membranes has been mainly approached through grafting of environmentally responsive polymers to the surface walls of polymeric porous membranes. This synergizes the chemical stability and mechanical strength of the polymer membrane with the fast response times of the bonded polymer chains. Therefore, different composite membranes capable of changing their effective pore size with environmental triggers have been developed. A recent interest has been the development of porous membranes responsive to light, since these can achieve rapid, remote, noninvasive, and localized flow control. This work describes the synthesis pathway to construct intelligent optothermally responsive membranes. The method followed involved the grafting of optothermally responsive polymer-metal nanoparticle nanocomposites to polycarbonate track-etched porous membranes (PCTEPMs). The nanoparticles coupled to the polymer grafts serve as the optothermal energy converters to achieve optical switching of the pores. The results of the paper show that grafting of the polymer andin situsynthesis of the metallic particles can be easily achieved. In addition, the composite membranes allow fast and reversible switching of the pores using both light and heat permitting control of fluid flow.

Author(s):  
M.J. Kim ◽  
L.C. Liu ◽  
S.H. Risbud ◽  
R.W. Carpenter

When the size of a semiconductor is reduced by an appropriate materials processing technique to a dimension less than about twice the radius of an exciton in the bulk crystal, the band like structure of the semiconductor gives way to discrete molecular orbital electronic states. Clusters of semiconductors in a size regime lower than 2R {where R is the exciton Bohr radius; e.g. 3 nm for CdS and 7.3 nm for CdTe) are called Quantum Dots (QD) because they confine optically excited electron- hole pairs (excitons) in all three spatial dimensions. Structures based on QD are of great interest because of fast response times and non-linearity in optical switching applications.In this paper we report the first HREM analysis of the size and structure of CdTe and CdS QD formed by precipitation from a modified borosilicate glass matrix. The glass melts were quenched by pouring on brass plates, and then annealed to relieve internal stresses. QD precipitate particles were formed during subsequent "striking" heat treatments above the glass crystallization temperature, which was determined by differential thermal analysis.


2019 ◽  
Vol 7 (28) ◽  
pp. 8575-8584 ◽  
Author(s):  
Věra Cimrová ◽  
Drahomír Výprachtický ◽  
Veronika Pokorná

New copolymers exhibit interesting electrochromic behaviour with fast response times and they are of interest for optical switching.


The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 119
Author(s):  
Anastasiia Tukmakova ◽  
Ivan Tkhorzhevskiy ◽  
Artyom Sedinin ◽  
Aleksei Asach ◽  
Anna Novotelnova ◽  
...  

Terahertz (THz) filters and detectors can find a wide application in such fields as: sensing, imaging, security systems, medicine, wireless connection, and detection of substances. Thermoelectric materials are promising basis for THz detectors’ development due to their sensitivity to the THz radiation, possibility to be heated under the THz radiation and produce voltage due to Seebeck effect. Thermoelectric thin films of Bi-Sb solid solutions are semimetals/semiconductors with the band gap comparable with THz energy and with high thermoelectric conversion efficiency at room temperature. Detecting film surface can be transformed into a periodic frequency selective surface (FSS) that can operate as a frequency filter and increases the absorption of THz radiation. We report for the first time about the simulation of THz detector based on thermoelectric Bi-Sb thin-filmed frequency-selective surface. We show that such structure can be both detector and frequency filter. Moreover, it was shown that FSS design increases not only a heating due to absorption but a temperature gradient in Bi-Sb film by two orders of magnitude in comparison with continuous films. Local temperature gradients can reach the values of the order of 100 K·mm−1. That opens new perspectives for thin-filmed thermoelectric detectors’ efficiency increase. Temperature difference formed due to THz radiation absorption can reach values on the order of 1 degree. Frequency-transient calculations show the power dependence of film temperature on time with characteristic saturation at times around several ms. That points to the perspective of reaching fast response times on such structures.


Author(s):  
YUTAKA AMAO ◽  
KEISUKE ASAI ◽  
ICHIRO OKURA

An optical oxygen sensor based on the phosphorescence quenching of palladium tetrakis(4-carboxyphenyl)porphyrin (PdTCPP) self-assembled film (SAM) on alumina plate was developed. The phosphorescence intensity of PdTCPP film decreased with increasing oxygen pressure, indicating that the film can be used as an optical oxygen-sensing device based on phosphorescence quenching by oxygen. The ratio I0/I100 as a sensitivity measure of the sensing film is estimated to be 17.7, showing that the film is a highly sensitive device for oxygen pressure. The film obeyed Stern–Volmer plots with a multisite model and possessed good operational stability and a fast response. Response times are 36 s for deoxygenated to oxygenated conditions and 148 s for the reverse conditions.


2015 ◽  
Vol 654 ◽  
pp. 213-217 ◽  
Author(s):  
Jan Grym ◽  
Roman Yatskiv ◽  
Ondřej Černohorský ◽  
María Verde ◽  
Jan Lorinčík ◽  
...  

We report on the electrophoretic deposition (EPD) of metal nanoparticles (NPs) prepared in reverse micelles on semiconductor substrates with the aim to fabricate sensitive Schottky-based hydrogen sensors with fast response and high degree of selectivity. We discuss the mechanism of NP monolayer formation and show which parameters are essential for the transition from three-dimensional to two-dimensional growth.


2015 ◽  
Vol 21 (2) ◽  
pp. 277-284
Author(s):  
Dragutin Nedeljkovic ◽  
Marija Stevanovic ◽  
Mirko Stijepovic ◽  
Aleksandar Stajcic ◽  
Aleksandar Grujic ◽  
...  

The task of this work was to construct the mixed matrix membrane based on polymer that could be used for the treatment of the waste gases. Therefore, high permeability for the carbon dioxide and low permeability for other gases commonly present in the industrial combustion waste gases (nitrogen, oxygen, hydrogen, methane) are essential. Those membranes belong to the group of dense composite membranes, and mechanism for separation is based on the solution-diffusion mechanism. In this paper, feasibility of the application of poly(ethyleneoxid)-copoly(phtalamide) was tested. In order to enchase the permeability of carbon dioxide, three different zeolites were incorporated, and in order to improve compatibility between the inorganic particles and polymer chains, n-tetradecyldimethylamonium bromide (NTAB).was added. Three zeolites were with the 2-dimensional pores (IHW, NSI and TER). The best results in carbon dioxide/hydrogen selectivity were obtained with the membrane constructed with PEBAX 1657 and surface treated zeolites, while the better results concerning selectivity were gained with membranes based on the Polyactive.


Nanophotonics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 1557-1562 ◽  
Author(s):  
Tao He ◽  
Yukun Zhao ◽  
Xiaodong Zhang ◽  
Wenkui Lin ◽  
Kai Fu ◽  
...  

AbstractIn this paper, a solar-blind ultraviolet photodetector (PD) based on the graphene/vertical Ga2O3 nanowire array heterojunction was proposed and demonstrated. To the best of our knowledge, it is the first time that vertical Ga2O3 nanowire arrays have been realized. Ga2O3 nanowires were obtained by thermally oxidizing GaN nanowires grown by molecular beam epitaxy on n-doped Si substrate. Then, a monolayer graphene film was transferred to Ga2O3 nanowires to form the graphene/vertical Ga2O3 nanowire array heterojunction and transparent electrodes. The fabricated device exhibited a responsivity (R) of 0.185 A/W and rejection ratio (R258 nm/R365 nm) of 3×104 at the bias of −5 V. Moreover, the fast response times of this PD were 9 and 8 ms for the rise and decay times under 254 nm illumination, respectively, which are attributed to the unique properties of nanowire arrays and the graphene/vertical Ga2O3 nanowire array heterojunction structure.


Author(s):  
Kevin Boyd ◽  
Adam Monkowski ◽  
Jialing Chen ◽  
Tao Ding ◽  
Ray Malone ◽  
...  

1993 ◽  
Vol 311 ◽  
Author(s):  
A.Peter Jardine ◽  
Peter G. Mercado

ABSTRACTAlthough the thermo-mechanical properties of NiTi are well known for bulk material, its deposition and utilization as a thin film are still in their earliest stages of research. The deposition of thin-films of Shape Memory Effect NiTi onto Si(100) wafers offers several advantages over bulk NiTi, including fast response times and comparatively large transformation forces. This has made it a promising candidate material as micro-actuators for Micro-Electro-Mechanical (MEMS) systems as well as for strain measurements. The cycling time for actuation was measured for a 20 μm free standing NiTi thin film cantilever. It was demonstrated that cycling frequencies of up to 50 Hz are achievable.


Sign in / Sign up

Export Citation Format

Share Document