scholarly journals Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Kaushlendra Tripathi

Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during thede novoprocess in the ER (endoplasmic reticulum) from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase) in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases), alkaline SMases (alk-SMASES), and neutral SMases (nSMases). The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Simon F. Scrace ◽  
Eric O'Neill

The RASSF family of proteins has been extensively studied in terms of their genetics, structure and function. One of the functions that has been increasingly studied is the role of the RASSF proteins in the DNA damage response. Surprisingly, this research, which encompasses both the classical and N-terminal RASSF proteins, has revealed an involvement of the RASSFs in oncogenic pathways as well as the more familiar tumour suppressor pathways usually associated with the RASSF family members. The most studied protein with respect to DNA damage is RASSF1A, which has been shown, not only to be activated by ATM, a major regulator of the DNA damage response, but also to bind to and activate a number of different pathways which all lead to and feedback from the guardian of the genome, p53. In this review we discuss the latest research linking the RASSF proteins to DNA damage signalling and maintenance of genomic integrity and look at how this knowledge is being utilised in the clinic to enhance the effectiveness of traditional cancer therapies such as radiotherapy.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 318 ◽  
Author(s):  
Doksani

Telomeric repeats, coated by the shelterin complex, prevent inappropriate activation of the DNA damage response at the ends of linear chromosomes. Shelterin has evolved distinct solutions to protect telomeres from different aspects of the DNA damage response. These solutions include formation of t-loops, which can sequester the chromosome terminus from DNA-end sensors and inhibition of key steps in the DNA damage response. While blocking the DNA damage response at chromosome ends, telomeres make wide use of many of its players to deal with exogenous damage and replication stress. This review focuses on the interplay between the end-protection functions and the response to DNA damage occurring inside the telomeric repeats, as well as on the consequences that telomere damage has on telomere structure and function.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-9
Author(s):  
Avik Dutta ◽  
Yue Yang ◽  
Bao Le ◽  
Golam Mohi

Somatic mutations in U2AF1 have been identified in ~11% cases of MDS. U2AF1 is involved in the recognition of the 3' splice site required for the recruitment of the U2 snRNP during pre-mRNA splicing. Most U2AF1 mutations are found in two hotspots (S34 and Q157) within the first and second zinc finger domains. Transgenic and knock-in mice expressing U2AF1 S34F mutant exhibit impaired hematopoiesis. However, the role of wild-type U2AF1 in regulating hematopoietic stem cell (HSC) function and normal hematopoiesis has remained unknown. To determine the role of U2AF1 in normal hematopoiesis, we generated a new conditional U2af1 knockout (floxed) mouse. We crossed U2af1 floxed mouse with Mx1-Cre mouse and the expression of Cre recombinase was induced with polyinosine-polycytosine (pI-pC) injection at 5 to 6 weeks after birth. We observed that deletion of U2af1 significantly reduced white blood cell, neutrophil, red blood cell and platelet counts in their peripheral blood compared with control animals within 10-14 days after pI-pC injection. Histopathologic analysis of the BM sections from U2af1-deficient mice showed severe BM aplasia. Flow cytometric analyses revealed a marked decrease in myeloid, erythroid and megakaryocytic precursors in the BM of U2af1-deficient mice compared with control animals. We also observed a marked decrease in Lin-Sca-1+c-kit+(LSK) and long-term hematopoietic stem cells (LT-HSC), short-term HSC (ST-HSC), and multipotential progenitors (MPP) as well as common myeloid progenitors (CMP), granulocyte-macrophage progenitors (GMP), and megakaryocyte-erythroid progenitors (MEP) in the BM of U2af1-deleted mice. Hematopoietic progenitor colony assays showed a significant decrease in myeloid (CFU-GM), erythroid (BFU-E), and megakaryocytic (CFU-Mk) colonies in the BM of U2af1-deficient mice.Together, these data suggest that loss of U2af1 causes severe defects in hematopoiesis. We performed both non-competitive and competitive BM transplantation assays using U2af1-deficient BM to determine the role of U2af1 in HSC function. There was marked reduction of HSC, progenitors and all types of blood and BM cell precursors upon U2af1 deletion (by pI-pC administration) in the transplanted animals. Also, U2af1-deficient HSCs were unable to compete with WT HSCs and there was rapid loss of hematopoietic progenitors/precursors derived from the U2af1-deficient HSCs. Since U2af1 deletion resulted in rapid decrease of hematopoietic progenitors in the BM, we asked whether deletion of U2af1 insulted the genome and induced apoptosis to hematopoietic cells in the BM. We observed significantly increased apoptosis in the total BM as wells as in c-kit+, Gr1+, Ter119+and CD41+cells suggesting that hematopoietic progenitors and precursors of multiple cell lineages underwent apoptosis upon U2af1 deletion. We also performed gamma-H2AX assay using imaging flow cytometry to evaluate DNA damage in total BM, Gr1+(myeloid) and CD71+(erythroid) cells in control and U2af1-deleted mice. We observed markedly elevated gamma-H2AX in total BM, Gr1+and CD71+cells from U2af1-deficient mice compared with control mice.In addition, we observed increased Chk1 phosphorylation (ser345), a hallmark for activation of the ATR pathway, and increased histone H2A K119 ubiquitination (H2AK119Ub), a marker for DNA damage response, in the BM of U2af1-deficient mice. Thus, depletion of U2af1 causes insult to the genome and induces DNA damage and increased cell death. To gain insights into severe hematopoietic defects observed in U2af1-deficient mice, we performed transcriptome profiling of sorted LSK cells from U2af1 wild type (control) and U2af1-deleted mice. GSEA analysis of RNA sequencing data revealed significant downregulation of genes related to HSC maintenance in U2af1-deficient LSK. GSEA also revealed enrichment for cell cycle and DNA damage response-related genes, consistent with decreased proliferation and increased DNA damage and apoptosis observed in U2af1-deficient hematopoietic progenitors. We also determined the effects of U2af1 deletion on RNA splicing. Interestingly, we observed significant changes in gene expression as well as splicing alterations in several genes important for HSC survival and function. In conclusion, our results suggest a crucial role for U2af1 in the survival and function of HSC. Disclosures Mohi: Tolero Pharmaceuticals Inc.: Research Funding.


2020 ◽  
Vol 118 (3) ◽  
pp. 258a
Author(s):  
Laszlo Csernoch ◽  
Mónika Gönczi ◽  
Zsolt Ráduly ◽  
László Szabó ◽  
Nóra Dobrosi ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 148
Author(s):  
Marius Bredon ◽  
Elisabeth Depuydt ◽  
Lucas Brisson ◽  
Laurent Moulin ◽  
Ciriac Charles ◽  
...  

The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1583
Author(s):  
Sara Pescatori ◽  
Francesco Berardinelli ◽  
Jacopo Albanesi ◽  
Paolo Ascenzi ◽  
Maria Marino ◽  
...  

17β-estradiol (E2) regulates human physiology both in females and in males. At the same time, E2 acts as a genotoxic substance as it could induce DNA damages, causing the initiation of cellular transformation. Indeed, increased E2 plasma levels are a risk factor for the development of several types of cancers including breast cancer. This paradoxical identity of E2 undermines the foundations of the physiological definition of “hormone” as E2 works both as a homeostatic regulator of body functions and as a genotoxic compound. Here, (i) the molecular circuitries underlying this double face of E2 are reviewed, and (ii) a possible framework to reconcile the intrinsic discrepancies of the E2 function is reported. Indeed, E2 is a regulator of the DNA damage response, which this hormone exploits to calibrate its genotoxicity with its physiological effects. Accordingly, the genes required to maintain genome integrity belong to the E2-controlled cellular signaling network and are essential for the appearance of the E2-induced cellular effects. This concept requires an “upgrade” to the vision of E2 as a “genotoxic hormone”, which balances physiological and detrimental pathways to guarantee human body homeostasis. Deregulation of this equilibrium between cellular pathways would determine the E2 pathological effects.


Author(s):  
Rachel L. Leon ◽  
Imran N. Mir ◽  
Christina L. Herrera ◽  
Kavita Sharma ◽  
Catherine Y. Spong ◽  
...  

Abstract Children with congenital heart disease (CHD) are living longer due to effective medical and surgical management. However, the majority have neurodevelopmental delays or disorders. The role of the placenta in fetal brain development is unclear and is the focus of an emerging field known as neuroplacentology. In this review, we summarize neurodevelopmental outcomes in CHD and their brain imaging correlates both in utero and postnatally. We review differences in the structure and function of the placenta in pregnancies complicated by fetal CHD and introduce the concept of a placental inefficiency phenotype that occurs in severe forms of fetal CHD, characterized by a myriad of pathologies. We propose that in CHD placental dysfunction contributes to decreased fetal cerebral oxygen delivery resulting in poor brain growth, brain abnormalities, and impaired neurodevelopment. We conclude the review with key areas for future research in neuroplacentology in the fetal CHD population, including (1) differences in structure and function of the CHD placenta, (2) modifiable and nonmodifiable factors that impact the hemodynamic balance between placental and cerebral circulations, (3) interventions to improve placental function and protect brain development in utero, and (4) the role of genetic and epigenetic influences on the placenta–heart–brain connection. Impact Neuroplacentology seeks to understand placental connections to fetal brain development. In fetuses with CHD, brain growth abnormalities begin in utero. Placental microstructure as well as perfusion and function are abnormal in fetal CHD.


Sign in / Sign up

Export Citation Format

Share Document