scholarly journals Design of Joint Spatial and Power Domain Multiplexing Scheme for Massive MIMO Systems

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zheng Jiang ◽  
Bin Han ◽  
Peng Chen ◽  
Fengyi Yang ◽  
Qi Bi

Massive Multiple-Input Multiple-Output (MIMO) is one of the key techniques in 5th generation wireless systems (5G) due to its potential ability to improve spectral efficiency. Most of the existing works on massive MIMO only consider Time Division Duplex (TDD) operation that relies on channel reciprocity between uplink and downlink channels. For Frequency Division Duplex (FDD) systems, with continued efforts, some downlink multiuser MIMO scheme was recently proposed in order to enable “massive MIMO” gains and simplified system operations with limited number of radio frequency (RF) chains in FDD system. However these schemes, such as Joint Spatial Division and Multiplexing (JSDM) scheme and hybrid precoding scheme, only focus on multiuser transmission in spatial domain. Different from most of the existing works, this paper proposes Joint Spatial and Power Multiplexing (JSPM) scheme in FDD systems. It extends existing FDD schemes from spatial division and multiplexing to joint spatial and power domain to achieve more multiplexing gain. The user grouping and scheduling scheme of JSPM is studied and the asymptotic expression for the sum capacity is derived as well. Finally, simulations are conducted to illustrate the effectiveness of the proposed scheme.

Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 55 ◽  
Author(s):  
Omar A. Saraereh ◽  
Imran Khan ◽  
Byung Moo Lee ◽  
Ashraf Tahat

Massive Multiple-input Multiple-output (MIMO) is an emerging technology for the 5G wireless communication systems which has the potential to provide high spectral efficient and improved link reliability and accommodate large number of users. Aiming at the problem of pilot contamination in massive MIMO systems, this paper proposes two algorithms to mitigate it. The first algorithm is depending on the idea of Path Loss to perform User Grouping (PLUG) which divide the users into the center and edge user groups depending on different levels of pilot contamination. It assigns the same pilot sequences to the center users which slightly suffer from pilot contamination and assign orthogonal pilot sequences to the edge users which severely suffer from pilot contamination. It is assumed that the number of users at the edge of each cell is the same. Therefore, to overcome such limitations of PLUG algorithm, we propose an improved PLUG (IPLUG) algorithm which provides the decision parameters for user grouping and selects the number of central and edge users in each cell in a dynamic manner. Thus, the algorithm prevents the wrong division of users in good channel conditions being considered as an edge user which causes large pilot overhead, and also identifies the users with worst channel conditions and prevents the wrong division of such users from the center user group. The second algorithm for pilot decontamination utilizes the idea of pseudo-random codes in which orthogonal pilot are assigned to different cells. Such codes are deployed to get a transmission pilot by scrambling the user pilot in the cell. Since the pilot contamination is generated because different cells multiplex the same set of orthogonal pilots and the pseudo-random sequences have good cross-correlation characteristics, this paper uses this feature to improve the orthogonality of pilots between different cells. Simulation results show that the proposed algorithms can effectively improve channel estimation performance and achievable rate as compared with other schemes.


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1552
Author(s):  
Tongzhou Han ◽  
Danfeng Zhao

In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.


Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 165 ◽  
Author(s):  
Xiaoqing Zhao ◽  
Zhengquan Li ◽  
Song Xing ◽  
Yang Liu ◽  
Qiong Wu ◽  
...  

Massive multiple-input-multiple-output (MIMO) is one of the key technologies in the fifth generation (5G) cellular communication systems. For uplink massive MIMO systems, the typical linear detection such as minimum mean square error (MMSE) presents a near-optimal performance. Due to the required direct matrix inverse, however, the MMSE detection algorithm becomes computationally very expensive, especially when the number of users is large. For achieving the high detection accuracy as well as reducing the computational complexity in massive MIMO systems, we propose an improved Jacobi iterative algorithm by accelerating the convergence rate in the signal detection process.Specifically, the steepest descent (SD) method is utilized to achieve an efficient searching direction. Then, the whole-correction method is applied to update the iterative process. As the result, the fast convergence and the low computationally complexity of the proposed Jacobi-based algorithm are obtained and proved. Simulation results also demonstrate that the proposed algorithm performs better than the conventional algorithms in terms of the bit error rate (BER) and achieves a near-optimal detection accuracy as the typical MMSE detector, but utilizing a small number of iterations.


2018 ◽  
Vol 39 (2) ◽  
pp. 107
Author(s):  
Victor Croisfelt Rodrigues ◽  
Taufik Abrão

The demand for higher data rates can be satisfied by the spectral efficiency (SE) improvement offered by Massive multiple-input multiple-output (M-MIMO) systems. However, the pilot contamination remains as a fundamental issue to obtain the paramount SE in such systems. This propitiated the research of several methods to mitigate pilot contamination. One of these procedures is based on the coordination of the cells, culminating in proposals with multiple pilot training phases. This paper aims to expand the results of the original paper, whereby the concepts of large pilot training phases were offered. The evaluation of such method was conducted through more comprehensible numerical results, in which a large number of antennas were assumed and more rigorous SE expressions were used. The channel estimation approaches relying on multiple pilot training phases were considered cumbersome for implementation and an uninteresting solution to overcome pilot contamination; contradicting the results presented in the genuine paper.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 164 ◽  
Author(s):  
Zahra Mokhtari ◽  
Maryam Sabbaghian ◽  
Rui Dinis

Massive multiple input multiple output (MIMO) technology is one of the promising technologies for fifth generation (5G) cellular communications. In this technology, each cell has a base station (BS) with a large number of antennas, allowing the simultaneous use of the same resources (e.g., frequency and/or time slots) by multiple users of a cell. Therefore, massive MIMO systems can bring very high spectral and power efficiencies. However, this technology faces some important issues that need to be addressed. One of these issues is the performance degradation due to hardware impairments, since low-cost RF chains need to be employed. Another issue is the channel estimation and channel aging effects, especially in fast mobility environments. In this paper we will perform a comprehensive study on these two issues considering two of the most promising candidate waveforms for massive MIMO systems: Orthogonal frequency division multiplexing (OFDM) and single-carrier frequency domain processing (SC-FDP). The studies and the results show that hardware impairments and inaccurate channel knowledge can degrade the performance of massive MIMO systems extensively. However, using suitable low complex estimation and compensation techniques and also selecting a suitable waveform can reduce these effects.


2020 ◽  
Author(s):  
Arthur Sousa de Sena ◽  
Pedro Nardelli

Massive multiple-input multiple-output (MIMO) and non-orthogonal multiple access (NOMA) are two key techniques for enabling massive connectivity in future wireless networks. A massive MIMO-NOMA system can deliver remarkable spectral improvements and reduced communication latency. Nevertheless, the uncontrollable stochastic behavior of the wireless channels can still degrade its performance. In this context, intelligent reflecting surface (IRS) has arisen as a promising technology for smartly overcoming the harmful effects of the wireless environment. The disruptive IRS concept of controlling the propagation channels via software can provide attractive performance gains to the communication networks, including higher data rates, improved user fairness, and, possibly, higher energy efficiency. In this article, in contrast to the existing literature, we demonstrate the main roles of IRSs in MIMO-NOMA systems. Specifically, we identify and perform a comprehensive discussion of the main performance gains that can be achieved in IRS-assisted massive MIMO-NOMA (IRS-NOMA) networks. We outline exciting futuristic use case scenarios for IRS-NOMA and expose the main related challenges and future research directions. Furthermore, throughout the article, we support our in-depth discussions with representative numerical results.


Author(s):  
Zahra Amirifar ◽  
Jamshid Abouei

<p>The massive multiple-input multiple-output (MIMO) technology has been applied innew generation wireless systems due to growing demand for reliability and high datarate. Hybrid beamforming architectures in both receiver and transmitter, includinganalog and digital precoders, play a significant role in 5G communication networksand have recently attracted a lot of attention. In this paper, we propose a simple andeffective beamforming precoder approach for mmWave massive MIMO systems. Wefirst solve an optimization problem by a simplification subject, and in the second step,we use the covariance channel matrixfCk=Cov(Hk)andBk=HkHHkinstead of chan-nel matrixHk. Simulation results verify that the proposed scheme can enjoy a highersum rate and energy efficiency than previous methods such as spatially sparse method,analog method, and conventional hybrid method even with inaccurate Channel StateInformation (CSI). Percentage difference of the achievable rate ofCk=Cov(Hk)andBk=HkHHkschemes compared to conventional methods are 2.51% and 48.94%, re-spectively.</p>


Author(s):  
Tanyaluk Deeka ◽  
Boriboon Deeka ◽  
Surajate On-rit

Massive Multiple-Input Multiple-Output (MIMO) is widely considered a pivotal communication technology for future generations of wireless networks. Massive MIMO uses a large number of antennas at the base station, which offers better effectiveness in spectral and energy use. However, a Frequency Division Duplex (FDD) system is challenging in reciprocity since it is difficult to estimate channels and requires feeding back channel state information. Joint Spatial Division and Multiplexing (JSDM) is a simplified FDD technique to provide massive MIMO gains. The main idea of JSDM is related to grouping users with approximately similar channel covariance. Many machine learning algorithms have been applied to conduct user grouping. In this paper, to improve the user grouping, we employ Reinforcement Guided Competitive Learning (RGCL) to the user grouping and then compare it with clustering techniques, including K-means, and sequential K-means to achieve the appropriate user grouping. The experimental results show that the RGCL technique represents better performance in computational time and system throughput than the other two above mentioned techniques, since RGCL can avoid being trapping in local minima.


2020 ◽  
Author(s):  
Arthur Sousa de Sena ◽  
Pedro Nardelli

This paper addresses multi-user multi-cluster massive multiple-input-multiple-output (MIMO) systems with non-orthogonal multiple access (NOMA). Assuming the downlink mode, and taking into consideration the impact of imperfect successive interference cancellation (SIC), an in-depth analytical analysis is carried out, in which closed-form expressions for the outage probability and ergodic rates are derived. Subsequently, the power allocation coefficients of users within each sub-group are optimized to maximize fairness. The considered power optimization is simplified to a convex problem, which makes it possible to obtain the optimal solution via Karush-Kuhn-Tucker (KKT) conditions. Based on the achieved solution, we propose an iterative algorithm to provide fairness also among different sub-groups. Simulation results alongside with insightful discussions are provided to investigate the impact of imperfect SIC and demonstrate the fairness superiority of the proposed dynamic power allocation policies. For example, our results show that if the residual error propagation levels are high, the employment of orthogonal multiple access (OMA) is always preferable than NOMA. It is also shown that the proposed power allocation outperforms conventional massive MIMO-NOMA setups operating with fixed power allocation strategies in terms of outage probability.


Sign in / Sign up

Export Citation Format

Share Document