scholarly journals Reactive Oxygen Species Are Required for Human Mesenchymal Stem Cells to Initiate Proliferation after the Quiescence Exit

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
O. G. Lyublinskaya ◽  
Ya. G. Borisov ◽  
N. A. Pugovkina ◽  
I. S. Smirnova ◽  
Ju. V. Obidina ◽  
...  

The present study focuses on the involvement of reactive oxygen species (ROS) in the process of mesenchymal stem cells “waking up” and entering the cell cycle after the quiescence. Using human endometrial mesenchymal stem cells (eMSCs), we showed that intracellular basal ROS level is positively correlated with the proliferative status of the cell cultures. Our experiments with the eMSCs synchronized in the G0phase of the cell cycle revealed a transient increase in the ROS level upon the quiescence exit after stimulation of the cell proliferation. This increase was registered before the eMSC entry to the S-phase of the cell cycle, and elimination of this increase by antioxidants (N-acetyl-L-cysteine, Tempol, and Resveratrol) blocked G1–S-phase transition. Similarly, a cell cycle arrest which resulted from the antioxidant treatment was observed in the experiments with synchronized human mesenchymal stem cells derived from the adipose tissue. Thus, we showed that physiologically relevant level of ROS is required for the initiation of human mesenchymal stem cell proliferation and that low levels of ROS due to the antioxidant treatment can block the stem cell self-renewal.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Kaihua Ji ◽  
Lianying Fang ◽  
Hui Zhao ◽  
Qing Li ◽  
Yang Shi ◽  
...  

Unplanned exposure to radiation can cause side effects on high-risk individuals; meanwhile, radiotherapies can also cause injury on normal cells and tissues surrounding the tumor. Besides the direct radiation damage, most of the ionizing radiation- (IR-) induced injuries were caused by generation of reactive oxygen species (ROS). Human mesenchymal stem cells (hMSCs), which possess self-renew and multilineage differentiation capabilities, are a critical population of cells to participate in the regeneration of IR-damaged tissues. Therefore, it is imperative to search effective radioprotectors for hMSCs. This study was to demonstrate whether natural source ginger oleoresin would mitigate IR-induced injuries in human mesenchymal stem cells (hMSCs). We demonstrated that ginger oleoresin could significantly reduce IR-induced cytotoxicity, ROS generation, and DNA strand breaks. In addition, the ROS-scavenging mechanism of ginger oleoresin was also investigated. The results showed that ginger oleoresin could induce the translocation of Nrf2 to cell nucleus and activate the expression of cytoprotective genes encoding for HO-1 and NQO-1. It suggests that ginger oleoresin has a potential role of being an effective antioxidant and radioprotective agent.


Nanoscale ◽  
2015 ◽  
Vol 7 (34) ◽  
pp. 14525-14531 ◽  
Author(s):  
Andrea S. Lavado ◽  
Veeren M. Chauhan ◽  
Amer Alhaj Zen ◽  
Francesca Giuntini ◽  
D. Rhodri E. Jones ◽  
...  

Newly synthesised Zn (ii) porphyrin nanoparticle conjugates were irradiated with visible light to generate controlled amounts of ROS in hMSCs to advance the study of oxidative stress and cellular communication.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 483.2-484
Author(s):  
L. Zaripova ◽  
A. Midgley ◽  
S. Christmas ◽  
E. Baildam ◽  
R. Oldershaw

Background:Juvenile idiopathic arthritis (JIA) is a well-known chronic rheumatic disease of childhood characterised by progressive joint destruction and severe systemic complications.Immune cells are known to trigger the pathophysiological cascade in JIA, but there is little information regarding the contribution made by Mesenchymal stem cells (MSCs). These cells are able to modulate the immune response and decrease the level of pro-inflammatory cytokines. With addition of regenerative property it makes MSCs potential candidates for clinical application as immunosuppressants in treatment of autoimmune diseases.Objectives:To investigate MSCs proliferation, viability and immunomodulatory function in JIA and healthy children.Methods:MSCs were separated from peripheral blood (PB) and synovial fluid (SF) of JIA patients and healthy controls. Cell proliferation rate was counted by Population doublings per day (PDD) during 9 days, in the last of which alamarBlue™ assays were performed to assess cell viability. Due to measure senescence MSCs were stained with SA-β-galactosidase. Immunofluorescence was used to examine the expression of p16, p21, p53. Oxidative stress was measured with DCFH-DA. Cell cycle analysis was evaluated with Propidium Iodide and analysed by Accuri® C6 Flow Cytometer.Commercially-available bone marrow mesenchymal stem cells (BM-MSCs) were treated with graded concentrations of pro-inflammatory cytokines (0.1-100 ng/ml) with following examination of cell viability. Mixed lymphocyte reactions (MLR) were performed to measure MSC immunomodulatory abilityin vitro.Results:The growth kinetics of JIA-MSCs were different from healthy controls. JIA-MSCs divided slowly and appeared disorganised with large cytoplasm and loads of outgrowth. They demonstrated a decrease in cell proliferation (negative PDD) and metabolic activity. Difference in growth kinetics and metabolic activity were found inside the JIA PB group with some evidence of response following biological treatment. Thus, PB-MSCs from patients treated with TNFi and anti-IL6 medications had notably higher cell proliferation and metabolic activity against JIA patients received other therapy. Considering this difference, it was hypothesised that cytokines obtained in a high amount in PB and SF of JIA patients may influence MSCs viability. To prove this BM-MSCs were treated with cytokines and demonstrated a dose-dependent decrease in metabolic activity significantly after TNFα and IL1, no significantly after treatment with IL6. Both BM-MSCs treated with cytokines and JIA-MSCs displayed high level of reactive oxygen species.Cell cycle analysis revealed that JIA-MSCs were arrested in G0/G1 phase with low number of mitotic cells. In addition, the number of senescence-associated SA-β-gal-positive cells was notably higher in JIA-MSCs. Furthermore, JIA-MSCs expressed high level of immunofluorescence for p16, p21 and p53 which played an important role in regulating the senescence progress of MSCs.Results of MLR showed the ability of BM-MSCs to decrease the percentage of activated T-helpers, T-suppressors, B-cells and natural killers proliferation, while JIA-MSCs lost this property.Conclusion:Taken together current research has demonstrated that under the influence of proinflammatory cytokines JIA-MSCs suffered from oxidative stress and disruption of metabolic activity acquire senescent morphology, shorten of telomere length, arrest in G0 phase of cell cycle and finally loss of immune regulation. We are continuing our research to determine the mechanisms that are responsible for the impaired phenotype with the aim of identifying new therapeutic strategies for the treatment of JIA.Disclosure of Interests: :None declared


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1592
Author(s):  
Sevil Özer ◽  
H. Seda Vatansever ◽  
Feyzan Özdal-Kurt

Bone marrow mesenchymal stem cells (BM-MSCs) are used to repair hypoxic or ischemic tissue. After hypoxic the level of ATP is decreases, cellular functions do not continue and apoptosis or necrosis occur. Apoptosis is a progress of programmed cell death that occurs in normal or pathological conditions. In this study, we were investigated the hypoxic effect on apoptosis in mesenchymal stem cell. Bone marrow-derived stem cells were cultured in hypoxic (1% or 3%) or normoxic conditions 24, 96 well plates for 36 h. Cell viability was shown by MTT assay on 36 h. After fixation of cells with 4% paraformaldehyde, distributions of caspase-3, Bcl-2 and Bax with indirect immunoperoxidase technique, apoptotic cells with TUNEL assay were investigated. All staining results were evaluated using H-score analyses method with ANOVA, statistically. As a result, hypoxic condition was toxic for human mesenchymal stem cells and the number of death cell was higher in that than normoxic condition.


2015 ◽  
Vol 3 (16) ◽  
pp. 3150-3168 ◽  
Author(s):  
Sunil Kumar Boda ◽  
Greeshma Thrivikraman ◽  
Bikramjit Basu

Substrate magnetization as a tool for modulating the osteogenesis of human mesenchymal stem cells for bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document