scholarly journals Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yoshinobu Uchihara ◽  
Manabu Akahane ◽  
Takamasa Shimizu ◽  
Tomoyuki Ueha ◽  
Yusuke Morita ◽  
...  

Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yusuke Inagaki ◽  
Kota Uematsu ◽  
Manabu Akahane ◽  
Yusuke Morita ◽  
Munehiro Ogawa ◽  
...  

The objective of this study was to determine whether osteogenic matrix cell sheets (OMCS) could induce bone formation around grafted tendons, thereby enhancing early stage tendon to bone tunnel healing in skeletally mature male Japanese white rabbits. First, the osteogenic potential of rabbit OMCS was evaluated. Then, the OMCS were transplanted into the interface between the grafted tendon and the bone tunnel created at the tibia. Histological assessments and biomechanical tensile testing were performed after 3 weeks. The rabbit OMCS showed high alkaline phosphatase (ALP) activity, positive staining of ALP, and osteogenic potential when transplanted subcutaneously with beta tricalcium phosphate disks. Newly formed bony walls and positive collagen type I staining were seen around the grafted tendon with OMCS transplantation, whereas such bony walls were thinner or less frequent without OMCS transplantation. Micro-computed tomography images showed significantly higher bone volume in the OMCS transplantation group. The pullout strength was significantly higher with OMCS (0.74±0.23 N/mm2) than without OMCS (0.58±0.15 N/mm2). These results show that OMCS enhance early tendon to bone tunnel healing. This method can be applied to cases requiring early tendon to bone tunnel healing after ligament reconstruction surgery.


2021 ◽  
pp. 1-7
Author(s):  
Jin Xi Lim ◽  
Min He ◽  
Alphonsus Khin Sze Chong

BACKGROUND: An increasing number of bone graft materials are commercially available and vary in their composition, mechanism of action, costs, and indications. OBJECTIVE: A commercially available PLGA scaffold produced using 3D printing technology has been used to promote the preservation of the alveolar socket after tooth extraction. We examined its influence on bone regeneration in long bones of New Zealand White rabbits. METHODS: 5.0-mm-diameter circular defects were created on the tibia bones of eight rabbits. Two groups were studied: (1) control group, in which the bone defects were left empty; (2) scaffold group, in which the PLGA scaffolds were implanted into the bone defect. Radiography was performed every two weeks postoperatively. After sacrifice, bone specimens were isolated and examined by micro-computed tomography and histology. RESULTS: Scaffolds were not degraded by eight weeks after surgery. Micro-computed tomography and histology showed that in the region of bone defects that was occupied by scaffolds, bone regeneration was compromised and the total bone volume/total volume ratio (BV/TV) was significantly lower. CONCLUSION: The implantation of this scaffold impedes bone regeneration in a non-critical bone defect. Implantation of bone scaffolds, if unnecessary, lead to a slower rate of fracture healing.


2020 ◽  
Vol 48 (14) ◽  
pp. 3454-3466
Author(s):  
Yang Chen ◽  
Yan Xu ◽  
Muzhi Li ◽  
Qiang Shi ◽  
Can Chen

Background: A repaired rotator cuff (RC) often heals with interposed scar tissue, making repairs prone to failure. Urine-derived stem cells (USCs), with robust proliferation ability and multilineage differentiation, can be isolated from urine, avoiding invasive and painful surgical procedures for harvesting the cells. These advantages make it a novel cell source for autologous transplantation to enhance RC healing. Hypothesis: Implantation of an autogenous USC sheet to the injury site will enhance RC healing. Study Design: Controlled laboratory study. Methods: USCs isolated from urine were cultured using ascorbic acid and transforming growth factor β3 to form a cell sheet. Sixteen male mature beagles underwent bilateral shoulder surgery. The right shoulder underwent infraspinatus tendon (IT) insertion detachment and repair only, and the other was subjected to IT insertion detachment and repair, followed by autogenous USC sheet implantation. Among the animals, 3 received a Dil (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate)- labeled USC sheet implant in the right shoulder and were sacrificed at postoperative 6 weeks for cell tracking. The other animals were sacrificed at postoperative 12 weeks, and the IT-humerus complexes were harvested for gross observation, micro–computed tomography evaluation and histological analysis (n = 5), and mechanical testing (n = 8). Additionally, 13 unpaired canine cadaveric shoulders were included as native controls. Results: Micro–computed tomography analysis showed that the USC sheet group had a significant increase in bone volume/total volume and trabecular thickness at the RC healing site when compared with the control group ( P < .05 for all). Histologically, the Dil-labeled USC sheet was still visible at the RC healing site, which suggested that the implanted USCs remained viable at postoperative 6 weeks. Meanwhile, the healing interface in the USC sheet group regenerated significantly more enthesis-like tissue than did that of the control group ( P < .05). Additionally, the healing interface in the USC sheet group presented a larger fibrocartilage area, more proteoglycan deposition, and higher collagen birefringence than did that of the control group ( P < .05 for all). Biomechanically, the USC sheet group showed significantly higher failure load and stiffness versus the control group ( P < .05 for all). Conclusion: A USC sheet was able to enhance RC healing in a canine model. Clinical Relevance: The findings of the study showed that USC sheet implantation could serve as a practical application for RC healing.


2020 ◽  
Author(s):  
Jae hee Choi ◽  
Michael Seungcheol Kang ◽  
Myung Jin Shin ◽  
Dong Min Kim ◽  
Yu Na Lee ◽  
...  

Abstract Background Stem cells are an effective method of biologic healing and can be used to enhance the natural enthesis of the tendon-to-bone junction in rotator cuff repair. The purpose of this study was to investigate if the application of engineered stem cell sheets using adipose-derived cells (ADSCs) was effective in regeneration of natural enthesis and if there was a difference in the result of repair depending on the applied location Methods A chronic rotator cuff tear model was induced for 2 weeks, and cell sheets made using ADSCs isolated from rats were transplanted into the tendon-to-bone junction during surgical repair. Depending on the transplant location of the cell sheet, the difference in rotator cuff healing level between the overlaid group and the interposition group was compared to the surgical repair only group. The samples were obtained based on the tendon-to-bone junction and analysis of gross morphology, histology staining, and biomechanical analysis were performed. Results The differentiation potentials of ADSCs as stem cells were confirmed, as was the potential for tenogenic differentiation by growth factors. ADSCs were prepared as a sheet form to maintain the shape at the target site and to be easily attached. GFP-expressing ADSCs were proliferated in vivo and observed at the transplantation site. The overall healing level was better in the cell sheet transplanted group than in the control group that surgical repair only. Additionally, differences in healing level were shown depending on the cell sheet location by morphological, histological, and biomechanical perspectives. Histological results showed that the interposition transplantation group (1.75 ± 0.43, P = 0.004) showed better fibrocartilage formation and collagen orientation at the junction than the overlaid transplantation group (0.86 ± 0.83). Conclusion In the chronic rotator cuff repair model, the engineered stem cell sheets enhanced the regeneration of the tendon-to-bone junction. This regeneration was more effective when the stem cell sheet was interpositioned at the tendon-to-bone interface. Trial registration: Not applicable


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Tomoharu Takagi ◽  
Tamon Kabata ◽  
Katsuhiro Hayashi ◽  
Xiang Fang ◽  
Yoshitomo Kajino ◽  
...  

Abstract Background Subcutaneous adipose tissue represents an abundant source of multipotent adult stem cells named as Adipose-derived stem cells (ADSCs). With a cell sheet approach, ADSCs survive longer, and can be delivered in large quantities. We investigated whether intra-articular ADSC sheets attenuated osteoarthritis (OA) progression in a rabbit anterior cruciate ligament transection (ACLT) model. Methods Fabricating medium containing ascorbate-2-phosphate was used to enhance collagen protein secretion by the ADSCs to make ADSC sheets. At 4 weeks after ACLT, autologous ADSC sheets were injected intra-articularly into the right knee (ADSC sheets group), and autologous cell death sheets treated by liquid nitrogen were injected into the left knee (control group). Subsequent injections were administered once weekly. Femoral condyles were compared macroscopically and histologically. Results Macroscopically, OA progression was significantly milder in the ADSC sheets than in the control groups. Histologically, control knees showed obvious erosions in the medial and lateral condyles, while cartilage was retained predominantly in the ADSC sheets group. Immunohistochemically, MMP-1, MMP-13, ADAMTS-4 were less expressive in the ADSC sheets than in the control groups. Conclusions Periodic ADSC sheets injections inhibited articular cartilage degeneration without inducing any adverse effects. A large quantity of autologous ADSCs delivered by cell sheets homed to the synovium and protected chondrocytes.


2019 ◽  
Vol 98 (6) ◽  
pp. 673-681 ◽  
Author(s):  
C. Vaquette ◽  
S. Saifzadeh ◽  
A. Farag ◽  
D.W. Hutmacher ◽  
S. Ivanovski

This study reports on scaffold-based periodontal tissue engineering in a large preclinical animal model. A biphasic scaffold consisting of bone and periodontal ligament compartments manufactured by melt and solution electrospinning, respectively, was used for the delivery of in vitro matured cell sheets from 3 sources: gingival cells (GCs), bone marrow–derived mesenchymal stromal cells (Bm-MSCs), and periodontal ligament cells (PDLCs). The construct featured a 3-dimensional fibrous bone compartment with macroscopic pore size, while the periodontal compartment consisted of a flexible porous membrane for cell sheet delivery. The regenerative performance of the constructs was radiographically and histologically assessed in surgically created periodontal defects in sheep following 5 and 10 wk of healing. Histologic observation demonstrated that the constructs maintained their shape and volume throughout the entirety of the in vivo study and were well integrated with the surrounding tissue. There was also excellent tissue integration between the bone and periodontal ligament compartments as well as the tooth root interface, enabling the attachment of periodontal ligament fibers into newly formed cementum and bone. Bone coverage along the root surface increased between weeks 5 and 10 in the Bm-MSC and PDLC groups. At week 10, the micro–computed tomography results showed that the PDLC group had greater bone fill as compared with the empty scaffold, while the GC group had less bone than the 3 other groups (control, Bm-MSC, and PDLC). Periodontal regeneration, as measured by histologically verified new bone and cementum formation with obliquely inserted periodontal ligament fibers, increased between 5 and 10 wk for the empty, Bm-MSC, and PDLC groups, while the GC group was inferior to the Bm-MSC and PDLC groups at 10 wk. This study demonstrates that periodontal regeneration can be achieved via the utilization of a multiphasic construct, with Bm-MSCs and PDLCs obtaining superior results as compared with GC-derived cell sheets.


Author(s):  
Goro Kuramoto ◽  
Ibrahim A. Hammad ◽  
Brett D. Einerson ◽  
Amanda A. Allshouse ◽  
Michelle Debbink ◽  
...  

Objective The study aimed to assess the feasibility of creating and transplanting human umbilical cord mesenchymal stem cell sheets applied to a rat model of hysterotomy, and additionally to determine benefits of human umbilical cord mesenchymal stem cell sheet transplantation in reducing uterine fibrosis and scarring. Study Design Human umbilical cord mesenchymal stem cell sheets are generated by culturing human umbilical cord mesenchymal stem cells on thermo-responsive cell culture plates. The temperature-sensitive property of these culture dishes facilitates normal cell culture in a thin contiguous layer and allows for reliable recovery of intact stem cell sheets without use of destructive proteolytic enzymes.We developed a rat hysterotomy model using nude rats. The rat uterus has two distinct horns: one horn provided a control/untreated scarring site, while the second horn was the cell sheet transplantation site.On day 14 following surgery, complete uteri were harvested and subjected to histologic evaluations of all hysterotomy sites. Results The stem cell sheet culture process yielded human umbilical cord mesenchymal stem cell sheets with surface area of approximately 1 cm2.Mean myometrial thickness in the cell sheet-transplanted group was 274 µm compared with 191 µm in the control group (p = 0.02). Mean fibrotic surface area in the human umbilical cord mesenchymal stem cell sheet-transplanted group was 95,861 µm2 compared with 129,185 µm2 in the control group. Compared with control horn sites, cell sheet-transplanted horns exhibited significantly smaller fibrotic-to-normal myometrium ratios (0.18 vs. 0.27, respectively, p = 0.029). Mean number of fibroblasts in cell sheet-transplanted horns was significantly smaller than the control horns (483 vs. 716/mm2, respectively, p = 0.001). Conclusion Human umbilical cord mesenchymal stem cell sheet transplantation is feasible in a rat model of hysterotomy. Furthermore, use of stem cell sheets reduces fibroblast infiltration and uterine scar fibrotic tissue formation during hysterotomy healing, potentially mitigating risks of uterine scar formation. Key Points


2020 ◽  
Author(s):  
Tomoharu Takagi ◽  
Tamon Kabata ◽  
Katsuhiro Hayashi ◽  
Xiang Fang ◽  
Yoshitomo Kajino ◽  
...  

Abstract Background: Subcutaneous adipose tissue represents an abundant source of multipotent adult stem cells named as Adipose-derived stem cells (ADSCs). With a cell sheet approach, ADSCs survive longer, and can be delivered in large quantities. We investigated whether intra-articular ADSC sheets attenuated osteoarthritis (OA) progression in a rabbit anterior cruciate ligament transection (ACLT) model.Methods: Fabricating medium containing ascorbate-2-phosphate was used to enhance collagen protein secretion by the ADSCs to make ADSC sheets. At 4 weeks after ACLT, autologous ADSC sheets were injected intra-articularly into the right knee (ADSC sheets group), and autologous cell death sheets treated by liquid nitrogen were injected into the left knee (control group). Subsequent injections were administered once weekly. Femoral condyles were compared macroscopically and histologically.Results: Macroscopically, OA progression was significantly milder in the ADSC sheets than in the control groups. Histologically, control knees showed obvious erosions in the medial and lateral condyles, while cartilage was retained predominantly in the ADSC sheets group. Immunohistochemically, MMP-1, MMP-13, ADAMTS-4 were less expressive in the ADSC sheets than in the control groups.Conclusions: Periodic ADSC sheets injections inhibited articular cartilage degeneration without inducing any adverse effects. A large quantity of autologous ADSCs delivered by cell sheets homed to the synovium and protected chondrocytes.


2020 ◽  
Author(s):  
Tomoharu Takagi ◽  
Tamon Kabata ◽  
Katsuhiro Hayashi ◽  
Xiang Fang ◽  
Yoshitomo Kajino ◽  
...  

Abstract Background: Adipose-derived stem cells (ADSCs) represent an abundant source of multipotent adult stem cells easily isolated from subcutaneous adipose tissue. With a cell sheet approach, ADSCs survive longer, and can be delivered in large quantities. We investigated whether intra-articular ADSC sheets attenuated osteoarthritis (OA) progression in a rabbit anterior cruciate ligament transection (ACLT) model. Methods: Fabricating medium containing ascorbate-2-phosphate was used to enhance collagen protein secretion by the ADSCs to make ADSC sheets. At 4 weeks after ACLT, autologous ADSC sheets were injected intra-articularly into the right knee (ADSC sheets group), and autologous cell death sheets treated by liquid nitrogen were injected into the left knee (control group). Subsequent injections were administered once weekly. Femoral condyles were compared macroscopically and histologically. Results: Macroscopically, OA progression was significantly milder in the ADSC sheets than in the control groups. Histologically, control knees showed obvious erosions in the medial and lateral condyles, while cartilage was retained predominantly in the ADSC sheets group. Immunohistochemically, MMP-1, MMP-13, ADAMTS-4 were less expressive in the ADSC sheets than in the control groups. Conclusions: Periodic ADSC sheets injections inhibited articular cartilage degeneration without inducing any adverse effects. A large quantity of autologous ADSCs delivered by cell sheets homed to the synovium and protected chondrocytes by secretion of trophic factors.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5360
Author(s):  
Naoko Imagawa ◽  
Kazuya Inoue ◽  
Keisuke Matsumoto ◽  
Michi Omori ◽  
Kayoko Yamamoto ◽  
...  

Jaw reconstruction using an additive-manufacturing titanium artificial bone (AMTAB) has recently attracted considerable attention. The synthesis of a titanium artificial bone is based on three-dimensional computed tomography images acquired before surgery. A histological evaluation of porous AMTAB (pAMTAB) embedded in rat calvarial bone defects was conducted. This study examined three groups: rats implanted with mixed-acid and heat-treated pAMTAB, rats implanted with untreated pAMTAB, and rats with no implant. In both pAMTAB groups, bone defects were created in rat calvarial bones using a 5-mm trephine bar, followed by pAMTAB implantation. The pAMTAB was fixed to the defect using the fitting force of the surrounding bones. The rats were sacrificed at 4, 8, and 16 weeks after implantation, and the skull was dissected. Undecalcified ground slides were prepared and stained with Villanueva Goldner. Compared with the no implant control group, both pAMTAB groups exhibited new bone formation inside the defect, with greater bone formation in the mixed-acid and heat-treated pAMTAB group than in the untreated pAMTAB group, but the difference was not significant. These data suggest that pAMTAB induces bone formation after implantation in bone defects. Bone formation appears to be enhanced by prior mixed-acid and heat-treated pAMTAB.


Sign in / Sign up

Export Citation Format

Share Document