scholarly journals IL-10 and ARG-1 Concentrations in Bone Marrow and Peripheral Blood of Metastatic Neuroblastoma Patients Do Not Associate with Clinical Outcome

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Fabio Morandi ◽  
Michela Croce ◽  
Giuliana Cangemi ◽  
Sebastiano Barco ◽  
Valentina Rigo ◽  
...  

The expression of the immunosuppressive moleculesIL-10and arginase 1 (ARG-1), and ofFOXP3andCD163, as markers of regulatory T cells (Treg) and macrophages, respectively, was evaluated in bone marrow (BM) and peripheral blood (PB) samples collected at diagnosis from patients with metastatic neuroblastoma (NB). IL-10 and ARG-1 plasma concentrations were measured and the association of each parameter with patients’ outcome was tested. The percentages of immunosuppressive Treg and type-1 regulatory (Tr1) cells were also determined. In both BM and PB samples,IL-10mRNA expression was higher in metastatic NB patients than in controls. IL-10 plasma concentration was higher in patients with NB regardless of stage. NeitherIL-10expression nor IL-10 plasma concentration significantly associated with patient survival. In PB samples from metastatic NB patients,ARG-1andCD163expression was higher than in controls but their expression did not associate with survival. Moreover, ARG-1 plasma concentration was lower than in controls, and no association with patient outcome was found. Finally, in metastatic NB patients, the percentage of circulating Treg was higher than in controls, whereas that of Tr1 cells was lower. In conclusion, although IL-10 concentration and Treg percentage were increased, their contribution to the natural history of metastatic NB appears uncertain.

2007 ◽  
Vol 14 (4) ◽  
pp. 391-396 ◽  
Author(s):  
Dong Sung An ◽  
Betty Poon ◽  
Raphael Ho Tsong Fang ◽  
Kees Weijer ◽  
Bianca Blom ◽  
...  

ABSTRACT The goal of this study was to develop a small-animal model to study human immunodeficiency virus type 1 (HIV-1) pathogenesis in blood and primary and secondary lymphoid organs. Rag2−/−γc −/− mice that are neonatally injected with human CD34+ cells develop a functional human immune system (HIS), with human hematopoietic cells being found in the thymuses, peripheral blood, spleens, and bone marrow of the animals (hereafter these animals are referred to as HIS-Rag2−/−γc −/− mice). HIS-Rag2−/−γc −/− mice were infected with small amounts of CCR5-tropic HIV-1. Viral replication and immunophenotypic changes in the human cells in peripheral blood and lymphoid organs were examined. The productive infection of human cells in peripheral blood, thymus and spleen tissue, and bone marrow was detected. Ratios of CD4+ T cells to CD8+ T cells in the infected animals declined. Although no specific anti-HIV-1 immune responses were detected, immunoglobulin M (IgM) and IgG antibodies to an unidentified fetal calf serum protein present in the virus preparation were found in the inoculated animals. Thus, we have shown that the HIS-Rag2−/−γc −/− mouse model can be used for infection with low doses of CCR5-tropic HIV-1, which is most commonly transmitted during primary infections. HIS-Rag2−/−γc −/− mice can serve as a small-animal model for investigating HIV-1 pathogenesis and testing potential HIV-1 therapies, and studies with this model may replace some long and costly studies with nonhuman primates.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1461-1461
Author(s):  
Serena Marotta ◽  
Giovanna Giagnuolo ◽  
Giulia Scalia ◽  
Maddalena Raia ◽  
Santina Basile ◽  
...  

Abstract Abstract 1461 The differential diagnosis of myelofibrotic disorders encompasses chronic primary myelofibrosis (PMF), myelodysplastic syndromes with fibrosis (MDS-F), acute panmyelosis with myelofibrosis (APMF) and acute megakaryoblastic leukemia (AMKL). Most of these conditions are recognized as distinct entities by the WHO 2008 revised classification of myeloid neoplasms; however, the WHO admits that often a definitive diagnosis is problematic, mostly because of specimens with insufficient cellularity (e.g., “dry tap”). Nevertheless, the correct identification of the most aggressive fibrotic disorders (APMF and AMKL) remains crucial, given their poor prognosis and subsequent need of intensive treatment (including transplantation). Even the most recent molecular studies did not result in any contribution in the differential diagnosis. Here we report our experience on a cohort of about 300 patients who were admitted in our bone marrow failure unit because of cytopenia in the last 7 years. All these patients were evaluated by standard peripheral blood and bone marrow cytology, karyotype analysis and bone marrow thephine biopsy, aiming to a definitive hematological diagnosis. Flow cytometry analysis was performed at initial presentation and then serially during the follow up on both peripheral blood and bone marrow aspirate. All patients were classified according to the WHO 2008 revised classification of myeloid neoplasms, and received the best standard treatment based on the specific disease, age and comorbidities. This report focuses on 8 patients who shared a unique flow cytometry finding of an aberrant megakaryocyte-derived cell population, which seems associated with a distinct disease evolution. Two of these patients received the diagnosis of AMKL according to bone marrow aspirate and trephine biopsy; the karyotype was complex in one case (monosomal karyotype, including a 5q-), whereas no Jak-2 mutation or any other genetic lesions could be demonstrated. Their blast cells were CD34+, CD38+, CD45+, CD117+, CD33+, CD13+; in addition, in the peripheral blood, we detected the presence of an aberrant cell population which was CD45-, CD42b+ (CD34+ in one case and CD34- in the other one). In the blood smear, we observed megakaryocyte fragments which likely correspond to this aberrant cell population, as identified by flow cytometry. Other three patients presented with a severe pancytopenia: all of them had a dry tap, and their trephine biopsies documented a massive fibrosis. They had no previous hematological disorder (one suffered from Behcet syndrome), normal karyotype and absence of any typical genetic lesion (i.e., wild-type Jak-2). All of them did not show splenomegaly, increased LDH or leukoerythroblastosis; their peripheral blood smear showed abnormal giant platelets, often resembling megakaryocyte fragments. Flow cytometry documented in the peripheral blood the presence of a distinct population of CD45-, CD42b+, CD61+ cells, which was also CD34+ in one case. These 3 patients were initially classified as PMF, even if APMF could not be ruled out; however, within 6 months they all progressed to AMKL. At this stage, typical CD34+, CD45+ blast cells were accompanied by a progressive increase of CD45+, CD42b+, CD61+ cells. This aberrant megakaryocyte-derived cell population (which could not be demonstrated in patients with thrombocytopenia) was also identified in 3 additional patients, who have a previous history of hematologic disorders: two had a history of pure red cell aplasia (successfully treated by immunosuppressive therapy), and one a 5q- melodysplastic syndrome (responding to lenalidomide, even with transient cytogenetic remission). In all of them we observed the appearance of CD45-, CD42b+ cells in the peripheral blood, which appeared as giant platelets/megakaryocyte fragments in the blood film; this finding within a few weeks was followed by progression to AMKL (5q- was detected in 2 of 3 cases). In conclusion, we demonstrate that aberrant circulating megakaryocyte-derived cells detected by flow cytometry may be useful in the differential diagnosis of myelofibrotic disorders. These giant platelets or megakaryocyte fragments, regardless the initial diagnosis, were associated with early evolution into AMKL, likely representing a surrogate marker for aggressive neoplasms of the megakaryocytic lineage. Disclosures: Risitano: Alexion: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1281-1281
Author(s):  
Andrew A.G. Aprikyan ◽  
Jessica C. Hochberg ◽  
Patricia M. Miron ◽  
Beverly N. Hay ◽  
Bruce A. Woda ◽  
...  

Abstract Severe congenital neutropenia (SCN), also known as Kostmann disease, is a rare disorder characterized by peripheral blood agranulocytosis and maturation arrest of neutrophils within the bone marrow at the promyelocytic stage. Patients usually present with an absolute neutrophil count below 0.2 x 109/L and severe infections, with the typical onset of symptoms during infancy. Most patients respond to treatment with granulocyte colony-stimulating factor, but retain an increased risk for death from sepsis and for development of myelodysplastic syndrome and acute myeloid leukemia (MDS/AML). Several reports have described karyotype abnormalities associated with this syndrome, most typically clonal loss of chromosome 7 or abnormalities of chromosome 21 associated with transformation to MDS/AML. The etiology of these abnormalities and their role in progression to MDS/AML remains unclear. Here we present a case of a 15 year-old boy with SCN, lymphopenia, and persistent tetraploid mosaicism in the bone marrow and in subpopulations of peripheral blood leukocytes. His phenotype, including growth and development, was otherwise normal. The patient’s father, who had mild neutropenia and a history of monoclonal gammopathy, also showed a tetraploid subpopulation in his bone marrow. Flow cytometric analysis of the DNA content of CD45+ nucleated cells in the patient’s peripheral blood showed that 20% of CD13+ granulocytes, and 15% of CD14+ monocytes were tetraploid. The lifelong persistence of the mosaicism and the similar finding in the patient’s father suggest that it represents a congenital propensity towards acquiring tetraploidy. However, cytogenetic evaluation of the patient’s skin fibroblasts detected no tetraploidy, indicating failure of the putative tetraploid embryonic cells to contribute to that lineage. The fact that the patient’s father also had a population of tetraploid cells in his bone marrow and a history of neutropenia suggests a common underlying genetic cause for both conditions in this kindred. Mutational analysis revealed that the ELA2 gene sequence was normal, but the GFI1 gene exhibited transient, simultaneous appearance of two novel mutations: a missense substitution in exon 1 and a single base change in the promoter region, at a putative binding site for the myeloid-specific transcription factor MZF1. The GFI1 mutations were repeatedly identified in a DNA sample obtained in 2003, but not in 2001, 2002, or 2006 samples. Sequencing of DNA obtained from buccal swabs of the patient and his parents also revealed no GFI1 mutation. The transient appearance may represent the emergence and subsequent loss of a clone of hematopoietic stem or progenitor cells with GFI1 mutations. This hypothesis is supported by a recent report demonstrating that GFI1 mutation results in premature apoptosis of myeloid cells, similar to apoptosis-inducing mutations in the neutrophil elastase gene ELA2. The fact that GFI1 mutations were identified in a DNA sample from one year, but not from others, raises the possibility that GFI1 mutations reported in other neutropenic patients may also be transient. We speculate that an underlying genetic defect, inherited in an autosomal dominant pattern, leads to both disordered mitosis and leukopenia in this kindred.


1986 ◽  
Vol 14 (4) ◽  
pp. 360-364 ◽  
Author(s):  
A. S. M. Lamont ◽  
M. S. Roberts ◽  
D. G. Holdsworth ◽  
A. Atherton ◽  
J. J. Shepherd

Recently, a family tree with a predisposition for the gene of multiple endocrine neoplasia Type 1 has been identified in Tasmania. As the surgical identification and localisation of parathyroid adenomas is facilitated by the administration of methylene blue, an opportunity has presented to measure the plasma concentration of methylene blue and methaemoglobin production. The study was undertaken to establish whether significant methaemoglobin concentrations were generated during the infusion and whether these concentrations could be related to the corresponding methylene blue concentrations. Mean peak methylene blue concentrations of 3.72 μgl−1, mean percentage methaemoglobin of 10.0 and a Pa.O2 within acceptable clinical ranges were found. No apparent relationship between methylene blue concentration and methaemoglobin production was found.


2016 ◽  
Vol 5 (12) ◽  
pp. e1249553 ◽  
Author(s):  
Fabio Morandi ◽  
Sarah Pozzi ◽  
Sebastiano Barco ◽  
Giuliana Cangemi ◽  
Loredana Amoroso ◽  
...  

2003 ◽  
Vol 127 (2) ◽  
pp. e76-e79
Author(s):  
Joseph D. Khoury ◽  
Hesham M. Amin ◽  
Jeffrey L. Jorgensen ◽  
Mary L. Ostrowski ◽  
M. G. Kim Bloom ◽  
...  

Abstract Simultaneous involvement of the anterior mediastinum by thymoma and B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), to our knowledge, has not been previously reported. We describe a composite tumor composed of thymoma and CLL/SLL incidentally discovered in a 62-year-old man who had no history of malignant diseases or immunologic disorders. The preoperative peripheral blood specimen showed a normal complete blood cell count and differential count. The diagnosis was established by histologic examination and immunophenotypic studies of the surgically excised anterior mediastinal mass. Postoperatively, bone marrow aspiration and biopsy specimens showed morphologic evidence of CLL/SLL, and the presence of neoplastic cells in peripheral blood and bone marrow was confirmed by flow cytometry immunophenotypic analysis.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4296-4296
Author(s):  
Noemie Ravalet ◽  
Hélène Guermouche ◽  
Pierre Hirsch ◽  
Frederic Picou ◽  
Nathalie Gallay ◽  
...  

Abstract INTRODUCTION Cytokines are involved in many processes, including hematopoiesis and inflammation. Aging is associated with the onset of clonal hematopoiesis (CH) of indeterminate potential, putatively associated with a higher risk of progression to hematological malignancies such as myelodysplastic syndromes or acute myeloid leukemia. Moreover, CH may participate to create a pro-inflammatory environment contributing to the pathogenesis of age-related diseases, such as cardiovascular diseases. This is likely to be driven by or translated in changes in bone marrow (BM) and/or peripheral blood (PB) soluble factors for which reference values still remain unclear, because BM cytokines levels have never been determined in strictly selected healthy people. Indeed, control BM samples classically used in studies are from subjects undergoing surgeries for non-hematologic causes, such as total hip replacement or cardiac surgery, patients suffering from immune thrombocytopenic purpura, brain death patients or allogeneic BM donors. In this study, the BM and PB plasma concentrations of 49 hematopoietic and inflammatory cytokines were measured in a representative panel of 94 healthy adult volunteers and the results were analyzed considering their age and presence of CH. METHOD Ninety-four healthy donors aged from 18.6 to 80.1 years old (yo), including 58 women were recruited for this study (HEALTHOX protocol, CPP Tours, AFSSAPS identifier ID-RCB: 2016-A00571-50 and ClinicalTrials.gov # NCT02789839). The presence or absence of CH (>1% of variant allele frequency) in this cohort is already known (Guermouche H, Ravalet N et al, Blood Adv 2020;4(15):3550-3557). BM samples were obtained through sternal aspiration using a classical procedure in France, and PB sampling was performed at the same time by venipuncture. Samples were collected on sodium heparin or EDTA, centrifuged twice (1200 g, 10 min, 20 C°), aliquoted and stored at -80°C. A 48-plex human cytokine panel assay was used to quantify 48 human cytokines in PB and BM plasmas [beta-NGF, CCL2, CCL3, CCL4, CCL5, CCL7, CCL11, CCL27, CLEC11A, CXCL1, CXCL8, CXCL9, CXCL10, CXCL12, FGF-2, G-CSF, GM-CSF, HGF, IFN-alpha-2, IFN-gamma, IL-1 alpha, IL-1 beta, IL-1ra, IL-2, IL-2-RA, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-12B, IL-13, IL-15, IL-16, IL-17A, IL-18, KITLG, LIF, LT-alpha, M-CSF, MIF, PDGF subunit B, TNF, TNFSF10, VEGF-A]. MIF and FLT3L quantification were performed by ELISA. Regarding CH, the controls were subjects older than 50 yo without CH. Statistical analyses were performed with the R (3.6.3) and Rstudio version 1.2.5042 (www.rstudio.org) software. Comparisons were computed by Wilcoxon and Kruskal-Wallis tests. All pairwise multiple comparisons were performed using Dunn's-test for multiple comparisons of independent samples (PMCMR package). Correlations between cytokine levels in PB and BM were tested with Pearson and Spearman methods. Correlation matrices were plotted using the "corrplot" package. RESULTS CH was detected in 16 volunteers, mostly in individuals over 50 yo. BM and PB plasma samples were studied in 3 age-groups: 18-40, 40-60 and 60-80 yo. With aging, variations were observed for 18 BM cytokine levels, with 7 increasing (FLT3L, CXCL9, HGF, FGF-2, CCL27, IL-16, IL-18) and 8 decreasing (G-CSF, TNF, IL-2, IL-15, IL-17a, IL-4, LT-alpha, IL-1 alpha). In PB, 10 cytokines significantly increased with age (CXCL9, FLT3L, CCL27, CXCL10, HGF, CCL11, IL-16, IL-6, IL-1 beta, CCL2). CH was associated with significantly higher BM levels of MIF and IL-1 beta, lower BM levels of IL-9 and IL-5 and higher PB levels of IL-15, VEGF-A, IL-2, CXCL8, CXCL1 and G-CSF (Table). CONCLUSION In this study and for the first time, we concomitantly analyzed BM and PB concentrations of a panel of hematopoietic and inflammatory cytokines in a cohort of strictly selected healthy volunteers. In addition to the establishment of reference values, useful for various biological studies, and correlations between blood and BM levels, we identify variations in the BM of key cytokines according to age and CH. The differences in these cytokine concentrations, either as causes or as consequences, may shape both the BM microenvironment and hematopoietic processes, eventually leading to the beginning of age-related myeloid malignancies or inflammatory conditions. Figure 1 Figure 1. Disclosures Hirsch: Daiichi Sankyo Oncology: Consultancy; Novartis Pharma: Consultancy. Suner: Sanofi - Genzyme: Consultancy. Delhommeau: Celgene: Consultancy; BMS: Consultancy; Novartis: Consultancy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5535-5535
Author(s):  
Maged F. Khalil ◽  
Ashish Sangal ◽  
Alka Arora ◽  
Seema Niak ◽  
Zili He ◽  
...  

Abstract Introduction: AML/MDS is usually diagnosed in older adults with median age of 64 in patients at time of diagnosis, after occupational exposure to organic solvents, such as benzene, or previous therapeutic exposure to alkylating agents, topoisomerase inhibitors, or ionizing radiation. We are presenting a case of AML/MDS in a young female without previous history of exposure to alkylating agents or ionizing radiation, but with history of exposure to jet fumes. Case Report: This is a 30-year old Carribean woman, chronic smoker, ethanol user, employed for eight years at the airport, working on the ground with heavy direct exposure to jet fumes, who presented with 2 weeks of progressive dyspnea, fatigue and bone pains. She was found to have pancytopenia, hemoglobin 2.8 gm/dL, platelets 37,000/mL, and neutrophils 1100/mL. Peripheral smear showed many nucleated red blood cells and blasts. Bone marrow aspiration was “dry” and bone biopsy revealed hypercellularity with dysplastic changes in erythrocyte, granulocyte and megakaryocytic lineages with 46% blasts. Flow cytometry of peripheral blood showed positivity for CD13, CD33, CD34, and CD117 and HLA-DR with complex cytogenetics showing deletions involving chromosomes 5q, 7q, 12p, 20q and loss of chromosome 17. Fluorescent in situ hybridization (FISH) studies were negative for t(15,17), MLL, t(8,21), inv(16) seen in classical de novo AML. FISH also did not show abnormalities in the probe regions 5q31, 7q31, 8cen and 20q12 of chromosomes 5, 7, 8 and 20 classically seen in de novo MDS. The blast cell morphology suggested acute myelocytic leukemia on a background of myelodysplasia. Precise FAB subtype was not possible in the absence of special stains like myeloperoxidase, and specific and non-specific esterase stains. The patient was treated with two induction courses of cytosine arabinoside and idarubicin. With persistence of 4.5% blasts on the peripheral blood and severe bone marrow aplasia, she was referred for allogeneic stem cell transplantation, in view of failed induction remission and complex cytogenetics at presentation. Conclusion: Case-control studies of leukemia demonstrated only slight increase in risk of disease after many years of occupational or chemical exposures. More studies to investigate leukemia incidence in airport employees, or even communities near airports are needed.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2778-2778
Author(s):  
Amy Hsu ◽  
M. Monica Gramatges ◽  
Christopher Williams ◽  
Brian Yang Merritt ◽  
M. Tarek Elghetany ◽  
...  

Abstract Myelodysplastic syndrome (MDS) is rare in children. Certain inherited bone marrow failure syndromes (IBMFS), such as Fanconi anemia, severe congenital neutropenia and Shwachman Diamond syndrome, markedly increase the risk of MDS during childhood. However, the genetic factor(s) underlying sporadic pediatric MDS are unknown. Germline mutations in GATA2, a hematopoietic transcription factor, explain four MDS-predisposing conditions: monocytopenia and mycobacterial infection (MonoMAC); dendritic cell, monocyte, B and NK cell lymphoid deficiency (DCML); primary lymphedema with myelodysplasia progressing to acute myeloid leukemia (Emberger syndrome); and a subset of familial MDS. Cases of pediatric MDS have been observed in some of the reported pedigrees. In addition, three individuals have been reported with large, de novo deletions encompassing GATA2 and surrounding genes and manifesting developmental delay, intellectual disability and dysmorphic features alongside their hematologic abnormalities. We identified a novel GATA2 splice site variant (c.1018-2A>C) in a teenager with MDS, WHO classification refractory cytopenia of childhood (RCC). Although he was found to have monocytopenia and B and NK cell deficiencies, he had no history of infections associated with MonoMAC or pertinent family history. We, therefore, hypothesized that mutations in GATA2 might be present in additional cases of pediatric MDS that were neither associated with an IBMFS nor relevant personal or family history. Two Baylor College of Medicine biology studies open to children with hematologic disease were queried for patients with the diagnosis of MDS. Exclusion criteria included treatment-related MDS, diagnosis of an IBMFS, prior diagnosis of severe aplastic anemia or infections suspicious for MonoMAC or DCML, and known or suspected family history of a GATA2-associated disorder. Cases lacking a pre-hematopoietic stem cell transplantation (HSCT) tissue sample available for study were also excluded. In addition to the patient described above, six children were identified who met eligibility criteria. DNA was isolated from banked peripheral blood or bone marrow cells and GATA2 sequencing performed, including upstream and intronic regulatory regions. Array comparative genomic hybridization was also performed on one sample that lacked GATA2 sequence variants, but was notable for complete absence of heterozygosity (AOH), including 6 polymorphic sites with minor allele frequencies of 0.20 or greater. Pertinent clinical and laboratory features were extracted by medical record review blinded to GATA2 status. We found heterozygous GATA2 mutations in three of the six additional patient samples. Thus, four of this seven patient, pediatric MDS cohort had mutated GATA2. Two of the newly identified mutations were splice site variants: a previously described c.1018-1G>A and a novel variant altering the exon 7 splice site acceptor (c.1114-1G>C). The third mutation was a de novo 3.1-3.3 Mb deletion encompassing the entire GATA2 locus and contiguous genes, and was established to be germline by analysis of skin fibroblasts. Notably, the patient had normal neurocognitive development and was without dysmorphic features. Their ages of presentation were 5, 9, 12 and 15 years. With the exception of the initial case, peripheral blood T and B cell phenotyping was not obtained prior to HSCT. Monocytopenia of less than 200/µL was present in five of seven patients, three of whom had a GATA2 mutation. All four GATA2 mutation cases had RCC and three of the four had monosomy 7 at diagnosis. In contrast, the three cases lacking GATA2 mutation presented with the MDS classification refractory anemia with excess blasts (RAEB-2), with either a normal karyotype, complex karyotypic changes or chromosome 13.q12q14 deletion. GATA2 mutation may explain a significant portion of sporadic, seemingly nonsyndromic pediatric MDS, particularly cases with monosomy 7. Evaluation of larger cohorts is warranted to ascertain the true prevalence. Although this cohort is small, we recommend GATA2 sequencing be performed as part of the initial evaluation of pediatric MDS as the identification of a germline mutation has critical implications for related donor selection and genetic counseling. AOH in GATA2 sequencing should prompt deletion analysis, even in cases without infections, dysmorphic features or neurocognitive impairment. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document