scholarly journals Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Nevenka Djurovic ◽  
Milka Domazet ◽  
Ruzica Stricevic ◽  
Vesna Pocuca ◽  
Velibor Spalevic ◽  
...  

Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Abazar Solgi ◽  
Vahid Nourani ◽  
Amir Pourhaghi

Doubtlessly the first step in a river management is the precipitation modeling over the related watershed. However, considering high-stochastic property of the process, many models are still being developed in order to define such a complex phenomenon in the field of hydrologic engineering. Recently artificial neural network (ANN) as a nonlinear interextrapolator is extensively used by hydrologists for precipitation modeling as well as other fields of hydrology. In the present study, wavelet analysis combined with artificial neural network and finally was compared with adaptive neurofuzzy system to predict the precipitation in Verayneh station, Nahavand, Hamedan, Iran. For this purpose, the original time series using wavelet theory decomposed to multiple subtime series. Then, these subseries were applied as input data for artificial neural network, to predict daily precipitation, and compared with results of adaptive neurofuzzy system. The results showed that the combination of wavelet models and neural networks has a better performance than adaptive neurofuzzy system, and can be applied to predict both short- and long-term precipitations.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Mehmet Şahin ◽  
Rızvan Erol

An artificial neural network (ANN), adaptive neurofuzzy inference system (ANFIS) models, and fuzzy rule-based system (FRBS) models are developed to predict the attendance demand in European football games, in this paper. To determine the most successful method, each of the methods is analyzed under different situations. The Elman backpropagation, feed-forward backpropagation, and cascade-forward backpropagation network types are developed to determine the outperforming ANN model. The backpropagation and hybrid optimization methods are used for training fuzzy inference system (FIS) to determine the outperforming ANFIS model. The fuzzy logic model is developed after experimenting different forms of membership functions. To this end, the data of 236 soccer games are used to train the ANN and ANFIS models, and 2017/2018 season’s data of these clubs are used to test all of the models. The results of all models are compared with each other and real past data. To assess the performance of each model, two error measures that are Mean Absolute Percent Error (MAPE) and Mean Absolute Deviation (MAD) are implemented. These measures reveal that the ANN model that has Elman network type outperforms the other models. Finally, the results emphasize that the proposed ANN model can be effectively used for prediction purposes.


2020 ◽  
Vol 85 (11) ◽  
pp. 1417-1427
Author(s):  
Olja Sovljanski ◽  
Ana Tomic ◽  
Lato Pezo ◽  
Aleksandra Ranitovic ◽  
Sinisa Markov

In the past decades, the bioremediation process based on denitrification by aerobic heterotrophic bacteria was extensively studied for different engineering approaches. Besides the fact that only non-pathogenic and non-biofilm forming bacteria must be used, it is very important to isolate bacteria or a group of bacteria in nature with the capacity to remove completely nitrate without accumulation of nitrogen oxides or ammonia as intermediates. In this article, the denitrification capacity of 43 bacterial strains isolated from slightly alkaline and calcite soils along the Danube River were investigated by artificial neural network (ANN) modelling. According to the obtained results, an ANN model was developed for the prediction of denitrification capacity of bacterial soil strains based on six signification denitrification indicators: biomass and N2 gas production, nitrate and nitrite concentration as well as nitrite and ammonia formation. The ANN model showed a reasonably good predictive capability of the outputs (overall R2 for prediction was 0.958). In addition, the experimental verification of the ANN in laboratory testing indicated that the ANN could predict the denitrification capacity of soil bacteria during the denitrification process in laboratory conditions.


Author(s):  
Shu-Farn Tey ◽  
Chung-Feng Liu ◽  
Tsair-Wei Chien ◽  
Chin-Wei Hsu ◽  
Kun-Chen Chan ◽  
...  

Unplanned patient readmission (UPRA) is frequent and costly in healthcare settings. No indicators during hospitalization have been suggested to clinicians as useful for identifying patients at high risk of UPRA. This study aimed to create a prediction model for the early detection of 14-day UPRA of patients with pneumonia. We downloaded the data of patients with pneumonia as the primary disease (e.g., ICD-10:J12*-J18*) at three hospitals in Taiwan from 2016 to 2018. A total of 21,892 cases (1208 (6%) for UPRA) were collected. Two models, namely, artificial neural network (ANN) and convolutional neural network (CNN), were compared using the training (n = 15,324; ≅70%) and test (n = 6568; ≅30%) sets to verify the model accuracy. An app was developed for the prediction and classification of UPRA. We observed that (i) the 17 feature variables extracted in this study yielded a high area under the receiver operating characteristic curve of 0.75 using the ANN model and that (ii) the ANN exhibited better AUC (0.73) than the CNN (0.50), and (iii) a ready and available app for predicting UHA was developed. The app could help clinicians predict UPRA of patients with pneumonia at an early stage and enable them to formulate preparedness plans near or after patient discharge from hospitalization.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


2014 ◽  
Vol 9 (12) ◽  
pp. 1226-1234
Author(s):  
Kadir Temizel ◽  
Mehmet Odabas ◽  
Nurettin Senyer ◽  
Gokhan Kayhan ◽  
Sreekala Bajwa ◽  
...  

AbstractLack of water resources and high water salinity levels are among the most important growth-restricting factors for plants species of the world. This research investigates the effect of irrigation levels and salinity on reflectance of Saint John’s wort leaves (Hypericum perforatum L.) under stress conditions (water and salt stress) by multiple linear regression (MLR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Empirical and heuristics modeling methods were employed in this study to relate stress conditions to leaf reflectance. It was found that the constructed ANN model exhibited a high performance than multiple regression and ANFIS in estimating leaf reflectance accurately.


2019 ◽  
Vol 28 (1) ◽  
pp. 35 ◽  
Author(s):  
Pablo Pozzobon de Bem ◽  
Osmar Abílio de Carvalho Júnior ◽  
Eraldo Aparecido Trondoli Matricardi ◽  
Renato Fontes Guimarães ◽  
Roberto Arnaldo Trancoso Gomes

Predicting the spatial distribution of wildfires is an important step towards proper wildfire management. In this work, we applied two data-mining models commonly used to predict fire occurrence – logistic regression (LR) and an artificial neural network (ANN) – to Brazil’s Federal District, located inside the Brazilian Cerrado. We used Landsat-based burned area products to generate the dependent variable, and nine different anthropogenic and environmental factors as explanatory variables. The models were optimised via feature selection for best area under receiver operating characteristic curve (AUC) and then validated with real burn area data. The models had similar performance, but the ANN model showed better AUC (0.77) and accuracy values when evaluating exclusively non-burned areas (73.39%), whereas it had worse accuracy overall (66.55%) when classifying burned areas, in which LR performed better (65.24%). Moreover, we compared the contribution of each variable to the models, adding some insight into the main causes of wildfires in the region. The main driving aspects of the burned area distribution were land-use type and elevation. The results showed good performance for both models tested. These studies are still scarce despite the importance of the Brazilian savanna.


Sign in / Sign up

Export Citation Format

Share Document