scholarly journals Surface Epitope Coverage Affects Binding Characteristics of Bisphenol-A Functionalized Nanoparticles in a Competitive Inhibition Assay

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yang Lu ◽  
Joshua Richard Peterson ◽  
Erwann Luais ◽  
John Justin Gooding ◽  
Nanju Alice Lee

The biomolecule interface is a key element in immunosensor fabrication, which can greatly influence the sensor performance. This paper explores the effects of surface epitope coverage of small molecule functionalized nanoparticle on the apparent affinity (avidity) of antibody in a competitive inhibition assay using bisphenol-A (BPA) as a model target. An unconventional two-antibody competitive inhibition ELISA (ci-ELISA) using thiolated BPA modified gold nanoparticles (cysBPAv-AuNP) as a competing reagent was devised for this study. It was shown that the antibody complexation with cysBPAv-AuNPs required a minimum number of surface epitopes on the nanoparticle to form a sufficiently strong interaction and reliable detection. The binding of cysBPAv-AuNP to anti-BPA antibodies, for limited antibody binding sites, was enhanced by a greater number of epitope-modified nanoparticles (cysBPAv-AuNP) as well as with higher epitope coverage. Increasing the molar concentration of epitope present in an assay enhanced the binding between anti-BPA antibodies and cysBPAv-AuNP. This implies that, to increase the limit of detection of a competitive inhibition assay, a reduced molar concentration of epitope should be applied. This could be achieved by either lowering the epitope coverage on each cysBPAv-AuNP or the assay molar concentration of cysBPAv-AuNP or both of these factors.

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3328
Author(s):  
Pouya Mehrdel ◽  
Hamid Khosravi ◽  
Shadi Karimi ◽  
Joan Antoni López Martínez ◽  
Jasmina Casals-Terré

Microfluidic paper-based analytical devices (µPADs) are a promising technology to enable accurate and quantitative in situ assays. Paper’s inherent hydrophilicity drives the fluids without the need for external pressure sources. However, controlling the flow in the porous medium has remained a challenge. This study addresses this problem from the nature of the paper substrate and its design. A computational fluid dynamic model has been developed, which couples the characteristics of the porous media (fiber length, fiber diameter and porosity) to the fluidic performance of the diffusion-based µPAD sensor. The numerical results showed that for a given porous membrane, the diffusion, and therefore the sensor performance is affected not only by the substrate nature but also by the inlets’ orientation. Given a porous substrate, the optimum performance is achieved by the lowest inlets’ angle. A diffusion-based self-referencing colorimetric sensor was built and validated according to the design. The device is able to quantify the hydronium concentration in wines by comparison to 0.1–1.0 M tartaric acid solutions with a 41.3 mM limit of detection. This research showed that by proper adjustments even the simplest µPADs can be used in quantitative assays for agri-food applications.


2015 ◽  
Vol 471 (3) ◽  
pp. 403-414 ◽  
Author(s):  
M. Florencia Rey-Burusco ◽  
Marina Ibáñez-Shimabukuro ◽  
Mads Gabrielsen ◽  
Gisela R. Franchini ◽  
Andrew J. Roe ◽  
...  

Necator americanus fatty acid and retinol-binding protein-1 (Na-FAR-1) is an abundantly expressed FAR from a parasitic hookworm. The present work describes its tissue distribution, structure and ligand-binding characteristics and shows that Na-FAR-1 expands to transport multiple FA molecules in its internal cavity.


1969 ◽  
Vol 62 (3) ◽  
pp. 521-536 ◽  
Author(s):  
M. L. Aubert ◽  
J.-P. Felber

ABSTRACT In investigations on the production and the specificity of anti-ACTH antibodies used for radioimmunoassay, differences have been observed between the various antibodies obtained. It was shown by means of competitive inhibition with different ACTH fragments that the binding of the ACTH molecule to its antibody can occur at different sites along the ACTH peptide. By varying the concentrations of the fragments and the conditions of the assays, it was possible to study the properties of each antibody. Thus antibodies which bind the N-terminal portion, or which exclusively bind the biologically active part of the ACTH chain (1–20), are the most suitable for radioimmunoassay. It was found, however, that the production of antiserum was generally more frequent when binding occurred to the C-terminal portion of the ACTH peptide. Should the presence of such fragments in plasma be confirmed, then the use of these antisera could lead to erroneous measurement of biologically inactive ACTH fragments. Thus, this study reveals that a selection of the antibody for specificity might be necessary for its application to the radioimmunoassay of plasma ACTH, and that this selection could be performed with the use of ACTH fragments. An approach to the problem of binding sites between antigen and antibody has been described and the possibility of introducing a radioimmunoassay for plasma ACTH fragments discussed.


1985 ◽  
Vol 68 (3) ◽  
pp. 357-364 ◽  
Author(s):  
J. S. D. Scott ◽  
E. P. W. Bowman ◽  
W. G. E. Cooksley

1. Binding of cobalamin (Cbl) was compared in liver and kidney plasma membranes prepared from rat and human tissues. 2. Single, high-affinity, saturable (200 pmol/l), binding sites for TC II-Cbl were found in all tissues; by contrast no receptors were present for free cobalamin, for which only non-specific adsorption occurred. 3. Binding constants for TC II-CNCbl determined for liver and kidney plasma membranes were of a similar magnitude. Mean values for Ka (litre/nmol) were 16.7 (rat liver), 18.8 (rat kidney), 8.0 (human liver) and 7.5 (human kidney). 4. Results for binding TC II-OHCbl instead of TC II-CNCbl showed no difference in Ka and Bmax. values, although the non-specific adsorption was decreased to a third. 5. Competitive inhibition results showed that the receptors are specific for the TC II molecule and that binding is unaffected either by the cobalamin moiety or by the presence of free cobalamin. Degradation of the receptor protein molecules by trypsin (10 μg/ml) resulted in 90% inhibition of binding. 6. It is concluded that differences between liver and kidney in cobalamin uptake and accumulation cannot be attributed to differences in their TC II receptors.


2020 ◽  
Vol 16 (5) ◽  
pp. 570-579
Author(s):  
Fuzi M. Fartas ◽  
Jaafar Abdullah ◽  
Nor A. Yusof ◽  
Yusran Sulaiman ◽  
Mohd I. Saiman ◽  
...  

Background: Bisphenol A (BPA) is considered one of the most common chemicals that could cause environmental endocrine disrupting. Therefore, there is an increasing demand for simple, rapid and sensitive methods for BPA detection that result from BPA leaching into foods and beverages from storage containers. Herein, a simple laccase electrochemical biosensor was developed for the determination of BPA based on Screen-Printed Carbon Electrode (SPCE) modified graphenegold/ chitosan. The synergic effect of graphene-gold/chitosan nanocomposite as electrode modifier greatly facilitates electron-transfer processes between the electrolyte and laccase enzyme, thus leads to a remarkably improved sensitivity for bisphenol A detection. Methods: In this study, laccase enzyme is immobilized onto the Screen-Printed Carbon Electrode (SPCE) modified Graphene-Decorated Gold Nanoparticles (Gr-AuNPs) with Chitosan (Chit). The surface structure of nanocomposite was studied using different techniques including Field Emission Scanning Microscopy (FESEM), TRANSMISSION Electron Microscopy (TEM), Raman spectroscopy and Energy Dispersive X-ray (EDX). Meanwhile, the electrochemical performances of the modified electrodes were studied using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). Results: The developed laccase biosensor offered excellent analytical performance for the detection of BPA with a sensitivity of 0.271 μA/μM and Limit of Detection (LOD) of 0.023 μM, respectively. Moreover, the constructed biosensor showed good reproducibility, selectivity and stability towards BPA. The sensor has been used to detect BPA in a different type of commercial plastic products as a real sample and satisfactory result was obtained when compared with the HPLC method. Conclusion: The proposed electrochemical laccase biosensor exhibits good result which is considered as a promising candidate for a simple, rapid and sensitive method especially in the resource- limited condition.


1984 ◽  
Vol 222 (3) ◽  
pp. 639-647 ◽  
Author(s):  
M I Bird ◽  
E D Saggerson

[14C]Malonyl-CoA bound to intact mitochondria isolated from rat liver and heart in a manner consistent with the presence of two independent classes of binding sites in each tissue. The binding characteristics for mitochondria obtained from fed male rats were: for heart, KD(1) = 11-18nM, KD(2) = 30 microM, N1 = 7pmol/mg of protein, N2 = approx. 660pmol/mg of protein; for liver, KD(1) = 0.1 microM, KD(2) = 5.6 microM, N1 = 11pmol/mg of protein, N2 = 165pmol/mg of protein. In the presence of 40 microM-palmitoyl-CoA the characteristics of binding at the high-affinity sites were changed, so that for heart KD(1) = 0.26 microM, with no change in N1 and for liver KD(1) = approx. 2 microM, with N1 increased to approx. 40pmol/mg of protein. Differences between the two tissues in tightness of malonyl-CoA binding at the high-affinity sites explains the considerably greater sensitivity of heart CPT1 (overt form of carnitine palmitoyltransferase) to inhibition by malonyl-CoA [Saggerson & Carpenter, (1981) FEBS Lett. 129, 229-232; McGarry, Mills, Long & Foster (1983) Biochem. J. 214, 21-28]. Starvation (24h) did not change the characteristics of [14C]malonyl-CoA binding to liver mitochondria and did not alter the I50 (concentration giving 50% inhibition) for displacement of [14C]malonyl-CoA by palmitoyl-CoA. Therefore the decreased sensitivity of liver CPT1 to inhibition by malonyl-CoA in starvation [Saggerson & Carpenter (1981) FEBS Lett. 129, 225-228; Bremer (1981) Biochim. Biophys. Acta 665, 628-631] is not explained by differences in malonyl-CoA binding. Percentage occupancy of the high-affinity sites in heart mitochondria by malonyl-CoA correlated closely with percentage inhibition of CPT1 measured under similar conditions. This finding supports the proposal that the high-affinity binding sites are the functional sites mediating inhibition of CPT1 by malonyl-CoA. Similar experiments with liver mitochondria also suggested that the occupancy of high-affinity sites by malonyl-CoA regulates CPT1 activity. 5,5′-Dithiobis-(2-nitrobenzoic acid), which decreased the sensitivity of heart or liver CPT1 to inhibition by malonyl-CoA [Saggerson & Carpenter (1982) FEBS Lett. 137, 124-128], also decreased [14C]malonyl-CoA binding to the high-affinity sites of heart mitochondria. N1 values for [14C]malonyl-CoA binding to high-affinity sites in liver mitochondria were determined in various physiological states which encompassed a 7-fold range of CPT1 maximal activity (fed, starved, pregnant, hypothyroid, foetal). The N1 value did not change in these states.(ABSTRACT TRUNCATED AT 400 WORDS)


2017 ◽  
Vol 14 (6) ◽  
pp. 385
Author(s):  
Yu Tian ◽  
Jianbo Li ◽  
Yanhui Wang ◽  
Chaofan Ding ◽  
Yuanling Sun ◽  
...  

Environmental contextBisphenol A, an important industrial material widely used as a plasticiser, fire retardant and resin polymer material, can cause endocrine disorders and precocious puberty. We developed a portable and efficient method for determining bisphenol A, and apply it to the detection of bisphenol A in bottles for infants and young children. AbstractA highly effective electrochemical sensor was developed for the highly sensitive detection of bisphenol A (BPA). The sensor is based on a glassy carbon electrode modified with a composite comprising 1-butyl-3-methyl imidazole hydrobromide (an ionic liquid, IL)-functionalised grapheme oxide (GO) to which gold nanoparticles (AuNPs) and carboxylic acid-functionalised carbon nanotubes (CNT) were absorbed. The negatively charged carboxylic acid-functionalised CNTs and AuNPs are adsorbed on the positively charged GO-IL composite film by electrostatic adsorption. The as-prepared GO-IL-CNT-AuNP hybrid nanocomposites exhibit excellent water solubility owing to the high hydrophilicity of the GO-IL components. Moreover, the excellent conductivity is attributed to the good conductivity of the IL, CNT and AuNP components. The hydrid materials enhance the preconcentration efficiency of BPA and accelerate the electron transfer rate at the electrode–electrolyte interface, as such the resultant fabricated electrochemical sensor displays a fast, stable and sensitive detection performance for trace amounts of BPA. Differential pulse voltammetry was used as a sensitive analytical method for the determination of BPA, and a much wider linear dynamic range of BPA determination was found between 5 and 100nM. The limit of detection for BPA was found down to 1.5nM based on a signal to nose ratio of 3. The modified electrode was successfully employed to detect BPA extracted from a plastic water bottle and milk carton.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
S Fialková ◽  
T Král ◽  
J Kohoutek ◽  
K Franzová ◽  
M Ješeta ◽  
...  

Abstract Study question Can we quantitatively determine concentrations of endocrine disruptors namely bisphenol A and S in seminal fluid? Summary answer We developed selective analytical method to simultaneously screen for the presence of bisphenol A (BPA) and S (BPS). What is known already The male reproductive system involves processes, which may be influenced by the disruption of the endocrine system by chemicals called endocrine disruptors (EDs). There is a growing evidence that EDs such as bisphenol A and S may be responsible for the decline in male reproductive health. To date, the claimed adverse effects on male fertility are largely based on the results from studies assessing the relationship between urinary BPA and BPS concentration and semen parameters. The best evidence of an adverse effect of BPA and BPS directly on spermatozoa could be provided by measuring bisphenols concentration directly in seminal fluid. Study design, size, duration To selectively and quantitatively analyzed bisphenols in any biological matrix advanced analytical tools and selective sample preparation protocols must be employed. In this study we developed targeted analytical method based on liquid chromatography tandem mass (LC-MS/MS) detection to measure bisphenol A and S in seminal fluid samples obtained from IVF clinic. A total of 140 samples were analysed. Participants/materials, setting, methods BPA and BPS was extracted from 140 seminal fluid samples using solvent extraction followed by preconcentration step. Samples were analyzed on Agilent 6495 Triple Quadrupole (Agilent Technologies, Santa Clara, CA) operating in the ESI-negative mode. Two MS/MS transitions were used for quantitative LC-MS/MS analyses. Chromatographic separation was achieved on Waters™ ACQUITY™ UPLC™BEH C18 (100 × 2.1 mm, 1.7 µm) column using gradient elution with a mixture of 0.1mM ammonium fluoride and methanol as mobile phases. Main results and the role of chance We developed selective sample preparation method for detection of BPA and BPS in seminal fluid followed by LC-MS/MS detection. The method validation was performed based on FDA guidelines. Validation criteria included limit of detection (LOD), limit of quantitation (LOQ), accuracy and precision. Due to the lack of the certified reference material the validation criteria of the method were assessed in pool of spiked seminal samples. The accuracy of the LC-MS/MS method was evaluated as a percent recovery of the amount of target analyte added into the sample. Recovery rates were above 80% for both analytes. LOD was 0.04 ng/mL for BPA and 0.01 ng/mL for BPS. LOQ was 0.14 ng/mL and 0.02 ng/mL for BPS. Measured BPA concentration ranged from 0.04 ng/mL to 1.62 ng/mL. For BPS, the concentration ranged from 0.01 ng/mL to 0.47 ng/mL. BPA and BPS were detected in 64% and 81% of samples, respectively. Interestingly, BPA showed lower detection frequency compared to BPS. These results are consistent with other studies performed on urine samples. Limitations, reasons for caution The limitation of the developed method is the time-consuming sample preparation and analysis cost. Wider implications of the findings: These results document for the first time the presence of BPS in seminal fluid. Knowing the concentration of BPA and BPS in seminal fluid is crucial for mitigating the associated health risks and initiating intervention and prevention strategies. Our future work will evaluate the influence of BPS concentration on spermatozoa. Trial registration number AZV NV18–01–00544; CZ.02.2.69/0.0/0.0/19_074/0012727


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3368 ◽  
Author(s):  
Carlos Angulo Barrios

In this paper, a compact, integrated, semiconductor-clad strip waveguide label-free biosensor is proposed and analyzed. The device is based on CMOS-compatible materials such as amorphous-Si and silicon oxynitride. The optical sensor performance has been modeled by a three-dimensional beam propagation method. The simulations indicate that a 20-μm-long device can exhibit a surface limit of detection of 3 ng/cm2 for avidin molecules in aqueous solution. The sensor performance compares well to those displayed by other photonic biosensors with much larger footprints. The fabrication tolerances have been also studied in order to analyze the feasibility of the practical implementation of the biosensor.


Sign in / Sign up

Export Citation Format

Share Document